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ABSTRACT

We have investigated the dynamical properties of two-dimensional (2D) Josephson

junction arrays at temperatures below the Kosterlitz-Thouless phase transition. We have

completed a comprehensive study, based on experiments and simulations, of the effects of

large direct (dc) and radio-frequency (rf) bias currents on 2D arrays in the presence of

perpendicular magnetic fields. Experiments were performed on large 1000 by 1000 arrays

of Nb-Cu-Nb proximity-effect junctions that were fabricated using various

photolithographic and thin-film deposition techniques.

We present a complete explanation of the dynamic resistance in arrays as a function of

both dc bias current and magnetic field. For certain fields, when the number of flux quanta

per array unit cell is the ratio of two integers, the field-induced vortices are commensurate

with the array and are arranged in ordered superlattices with qxq unit cells. Prominent

peaks in the dynamic resistance are observed for these commensurate magnetic fields, and

we relate the currents at these peaks with the depinning currents of the vortex superlattices.

New exact calculations of the critical current are presented for the cases where f = 1/2 and

1/3, which agree well with previous theoretical results and our experimental measurements.

When rf currents are applied to the 2D arrays in commensurate magnetic fields, novel

fractional giant steps appear in the current-voltage curves at voltages, Vn = n(N/q)hv/2e,

(where N = 1000 is the number of junctions in the direction of applied current) directly

related to the vortex superlattice unit cell size, q. These steps are confirmed through

computer simulations on arrays of resistively shunted Josephson junctions. We propose a

phenomenological model to explain these novel steps, based on the locking of the motion

of the vortex superlattices with the applied rf current, and, using simulations, we show that

the detailed motion of the vortices is in agreement with the model.
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We also present the results of simulations of positionally-disordered superconducting

wire networks. We determined the critical field from the decay of oscillations in the

calculated transition temperature as a function of magnetic field. This is found to be in

excellent agreement with our experimental magnetoresistance measurements of positionally-

disordered Josephson junction arrays.
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CHAPTER 1

INTRODUCTION TO 2D ARRAYS

1.1 Introduction

Next to the discovery of superconductivity itself, probably the most important

contribution to the fields of superconductivity and superconducting electronics was the

prediction of the Josephson effect by B. D. Josephson in 1962. Josephson predicted that

pairs of electrons could tunnel between two closely-spaced superconductors so that a

supercurrent could flow between them of magnitude

i = ic siny, (1.1.1)

where y is the phase difference between the macroscopic wave functions of the two

superconductors, and the critical current, iC, is the maximum supercurrent that will flow

through the junction. He also predicted that the phase difference will change at a rate

proportional to that voltage,

h dy
v = -- -- (1.1.2)

2e dt

Equations (1.1.1) and (1.1.2) are known as the Josephson equations, and they determine

the superconducting properties of Josephson junctions.

Josephson junctions display interesting cooperative phenomena when they are

connected together in a two-dimensional (2D) array. In the past, 2D arrays have been

primarily used to study the statistical physics of phase transitions in two dimensions, and in
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particular the Kosterlitz-Thouless phase transition (Kosterlitz and Thouless, 1973; Resnick

et al., 1981; Voss and Webb, 1982; and Abraham et al., 1982). (For a review of 2D arrays

see Lobb, 1984, and Mooij, 1983). With the recent advances in fabrication technology,

including the ability to introduce controlled amounts of disorder (Forrester, 1988), 2D

arrays have also been used as model systems to understand the behavior of granular

superconductors. These particular properties of 2D arrays--the ability to model granular

systems and to display the Kosterlitz-Thouless transition--have been used to interpret some

of the properties of the newly discovered high transition-temperature copper-oxide

superconductors (see Tinkham and Lobb, 1989).

Previous work has focused on the static properties or equilibrium phase transitions

of 2D arrays, using small signals and temperatures very close to the phase transition

temperature. The body of this report, however, will emphasize the dynamical properties of

2D Josephson junction arrays, including a detailed exploration of the collective response of

2D arrays to large dc and rf bias currents in the presence of magnetic fields. In this

chapter, we will begin with a brief review of some of the concepts that are essential to

understanding the physics of 2D arrays. These concepts include a simple model for a

single Josephson junction (Section 1.2), the Kosterlitz-Thouless transition (Section 1.3),

and the commensurability of applied perpendicular magnetic fields with the array of

junctions (Section 1.4).

In Chapter 2, we will describe the fabrication process for making our SNS arrays,

the experimental measurement circuits and setup, and some experimental details that will be

important when we interpret the results in the following chapters. The dynamical

properties of 2D arrays in the presence of a dc bias current and a perpendicular magnetic

field will be described in Chapter 3. The experimental properties of arrays with an

additional radio frequency (rf) bias current will be discussed in Chapter 4 and RSJ model

simulations of dc and rf current-biased arrays in commensurate magnetic fields will be

described in Chapter 5. Chapter 6 describes the results of Ginzburg-Landau calculations of

2



the TC of positionally disordered 2D wire networks in a magnetic field and compares them

with experimental magnetoresistance measurements on positionally disordered arrays. In

Chapter 7 we will summarize the results from Chapters 3-6, and comment on their

combined implications for the dynamical behavior of disordered 2D systems, and for

possible applications of 2D arrays in high-frequency superconducting electronics.

1.2 The Resistively Shunted Junction Model

In order to understand the dynamics of 2D arrays, it is important to first understand

single Josephson junctions. One of the best models for the Josephson junction is the

resistively shunted junction (RSJ) model, which was proposed independently by Stewart

(1968) and McCumber (1968). The RSJ model takes into account such physically

important properties of real junctions as resistance and capacitance. It treats the Josephson

junction as a parallel combination of elements: a resistor rn, a capacitor C, and the non-

linear Josephson element with a critical current ic as described by (1.1.1). If the junction is

current biased, the resulting circuit, shown schematically in Fig. 1. 1 a, can be described by

the following equation

ibi. = ic siny + -L + cdV, 01.2.1)
r dt

where y is again the phase difference across the junction. Since the voltage across the

junction is related to the rate of change of the phase from (. 1.2), we can rewrite (1.2. 1) in

dimensionless form as

- = sin y + d d (1.2.2)
c 3



(a)

C rn  ic i bias

2.5.................
(b)

2.0-

. 1.5

S 1.0

0.5 - 7
0 .0

0.0 0.5 1.0 1.5 2.0 2.5
ilic

Fig. 1.1. (a) Schematic diagram of the resistively shunted junction model,
where the Josephson junction is modelled as a resistance, rn, and
capacitance, C, in parallel with the supercurrent channel with critical
current, ic. ibi. is the bias current. (b) Normalized voltage vs. normalized
current for a single overdamped junction (for C = 0) from the RSJ model
(solid curve). The dashed curve represents the normal resistance, rn, and
illustrates how the junction i-v curve approaches R at higher currents.
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where T = 2xvct is the dimensionless time, and 3, = r,,!C/Lj is the McCumber parameter,

equivalent to the dimensionless capacitance. These dimensionless parameters are written in

terms of the characteristic frequency, v, = 2eicr,/h, and the Josephson inductance

Lj = /2ei,. It is important to note that (1.2.2) is analogous to the equation for a damped

driven pendulum. When OC < 1, the junction is overdamped, i.e. there is no resonance

frequency in the system and the voltage across the junction is a single-valued function of

the bias current. Our SNS junctions have negligible capacitance, so that oc << 1 and they

will be well-described by the overdamped model. When 3c = 0, (1.2.2) is reduced to a

first-order differential equation, and the corresponding dc voltage is found to be

v = icrn (i / i,) 2 -1. The current-voltage curve for this overdamped case is plotted in

Fig. 1.1 b, and is representative of our single junctions.

1.3 The Kosterlitz-Thouless Phase Transition

The 2D arrays that we have studied are made of superconducting islands weakly

coupled together through a normal metal, i.e. SNS Josephson junctions. The coupling

strength between each of the islands can be inferred from (1.1.1) (see Tinkham, 1975,

p. 211). This coupling energy is -Ej(T)cosy, where Ej(T) = hii(T)/2e is the Josephson

energy.

In zero magnetic field the arrays will undergo a Kosterlitz-Thouless phase transition

(Kosterlitz and Thouless, 1973) to an ordered state, which is dominated by the effects of

thermally-induced vortices. The phase transition temperature, Tc, is determined by the

temperature above which a free vortex is energetically favorable. In arrays, as shown by

Lobb eral. (1983) and Mooij (1983),

kTc = (7t/2) Ej*(Tc), (1.3.1)
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where Ej*(T) is a renormalized coupling energy which includes the effects of fluctuations

from spin waves and vortices.' Equation (1.3.1) is the junction array form of

A2ns*(T)/2mkTc = it/2, which is the universal quantity that determines the transition

temperature in 2D superfluids, where ns * (T) is the superfluid density. Nelson and

Kosterlitz (1977) predicted that the superfluid density in an infinite sample would undergo

a discontinuous jump to zero when it intersects with this line, and that the slope of this line

(2/it) is a universal constant. In an isotropic system, Ej*(T) is identical to the helicity

modulus, Y(T) = Ej*(T), which is a measure of the phase correlations in the system. 2 The

helicity modulus for zero magnetic field, as determined from Monte Carlo simulations on

finite arrays, is plotted in Fig. 1.2, and shows how the transition temperature of the system

can be determined from the universal line of (1.3.1). Note that kTe = 0.95 Ej(Tc) from

these simulations. The helicity modulus for a number of commensurate magnetic fields

(see Section 1.4) are also plotted in Fig. 1.2, and also have phase transition temperatures

determined by the sharp jump in Y(T) signifying the onset of correlations.

In zero magnetic field, as mentioned above, the phase transition is.dominated by

thermally induced vortices. For T < Te, all the vortices are bound in dipole pairs, each

consisting of two oppositely-signed vortices, i.e. their currents flow in the opposite

direction. Because these dipole pairs have zero net vorticity, the array will have zero

resistance for temperatures below T. For T > Te, thermal excitations cause some dipole

pairs to unbind, thus giving rise to dissipation when a measuring current is present. A

resistive transition results from the thermally-activated vortex unbinding, and the sheet

t In zero field, Ej*(T) = Ej(T)[1-kT/4Ej(T)]/e(TI), where the negative term inside the

brackets results from spin waves and e(Tl) is a polarizability due to vortex-vortex
interactions that is a function of both temperature and renormalized length scale I = ln(r/a)
(see Mooij, 1983).

2Y(T) determines the increase in the free energy of the system in response to a twist in the
phases across the array (see Forrester, 1988, p. 98).
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0.6 f=00.6 f= 1/2"
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0.0 0.5 1.0 1.5
kT/Ej

Fig. 1.2. Normalized helicity modulus vs. normalized temperature
determined from Monte Carlo simulations for various commensurate
magnetic fields (see Forrester, 1988, p. 98). The intersection of the helicity
modulus with the universal line of slope 2t determines the phase transition
temperature for f = 0. The temperatures where Y(T) drops sharply for the
other commensurate fields indicate their respective phase transition
temperatures.
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resistance, R(T), which is proportional to the density of free vortices, was shown by Lobb

et al. (1983) to be

rnblexp b2 (kT -kTc -1/2]
R(T) = , (1.3.2)

(lulkT )

where 10 is the modified (hyperbolic) Bessel function, r, is the normal-state resistance of a

junction (see Section 1.2), and b, and 12 are constants.

The resistive transition of one of our arrays is shown in Fig. 1.3. When the

temperature decreases from 10K to 8K, a sharp drop in resistance is observed at 8.8K

when the Nb islands become superconducting. As the temperature is further lowered, the

resistance decreases quickly and then gradually flattens out almost to a plateau at about 4K.

This particular region is characterized by proximity effects, where the superconductivity is

spreading from the superconducting islands into the normal metal region between the

junctions (Abraham et al., 1982). At approximately 4K, dipole pairs begin to form. As we

approach T, - 3.5K, the resistance drops sharply as described by (1.3.2), and below Tc all

the vortices are paired. For temperatures3 far below Tc, kT/Ej(T) << kT/Ej(Tc), very few

dipole pairs are thermally excited in the array.

The resistive transition of the arrays in zero field is much different from that of the

single junctions from which it is made. As stated previously, the Tc of the array is

determined by a 2D vortex-unbinding phase transition and its resistive transition is

dominated by the exponential temperature dependence of the number of free vortices. The

resistive transition of the single weakly-coupled junctions, however, is determined by the

3The normalized temperature kT/EI(T) must be used when comparing with theory which is
derived for a temperature independent coupling energy (see Lobb et al., 1983 and
Abraham et al., 1982).
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T (K)

Fig. 1.3. Typical measured resistive transition of a 1000 by 1000 array,
showing two transitions. The sharp drop in resistance at -8.8K is the
temperature where the Nb islands becoming superconducting. The drop to
zero resistance from 4K to 3.5K is due to the Kosterlitz-Thouless 2D phase
transition.
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ratio of the Josephson energy to the energy due to thermal fluctuations. As was shown by

Ambegaokar and Halperin (1969), the single junction resistance has the form,

r(T) = r 2 (1.3.3)

Because of thermal fluctuations, a single junction never truly has zero resistance like that of

an infinite 2D array for T < T. Monte Carlo simulations (see Fig. 1.2 and Teitel and

Jayaprakash, 1983a and 1983b) on arrays have determined kTc/Ej(Tc) - 0.95 in zero field.

At this particular temperature, the single junction has not yet dropped to even one-half of its

normal state resistance, according to (1.3.3). Thus, the Tc of the array is much higher than

the temperature at which the single junctions approach zero resistance. Critical currents

typically become measurable in the single junctions only below T - 1.5K. We are thus

unable to measure the dynamical properties of the single junctions at 1.5K-3.5K,

temperatures at which we typically measure the arrays (see Chapter 2).

1.4 Commensurate Magnetic Fields

When a perpendicular magnetic field, H, is applied to a 2D array, currents appear in

the form of vortices which are constrained by both the geometry of the 2D network and

flux quantization to flow through certain junctions. When the magnetic field applied to a

periodic array is such that the average number of flux quanta per unit cel, f, is the ratio of

two integers p and q, f = Ha2/ 0 = p/q, where a is the array lattice constant and 0 = h/2e

is the flux quantum, the field is said to be 'commensurate' because the field-induced vor-

tices are arranged in spatially periodic superlattices commensurate with the junction array

10



00X X Xa

___X X X

Fig. 1.4. Schematic diagram of a square array of Josephson junctions in a
commensurate magnetic field, where the average number of flux quanta per
unit cell of the array, f, is one-fifth (f = 1/5). The 'x's mark the positions of
the junctions and the direction of the applied field is out of the page. There
is one vortex centered on every fifth unit cell as indicated by the filled circles
with arrows. The vortices are arranged in a superla nice which is
commensurate with the underlying array.
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Fig. 1.5. Calculated 2D periodic vortex potential energy as a function of
vortex position for a representative area near a single unit cell in a square
array (Rzchowski et al., 1990). The peaks correspond to the vertices where
the junctions meet. The minimum in the center corresponds to the vortex
position being centered on the unit cell. The four higher energy saddle
points correspond to the vortex being centered on each of the four junctions,
which is an unstable position. The energy barrier from the minimum in the
center to the saddle points on the junctions is 0.2Ej = 0.27iJ2e (Lobb et al.,
1983). This potential is identical for all unit cells, making up the entire 2D
'egg-carton' potential seen by a single vortex in the array.
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geometry. This is shown schematically in Fig. 1.4 for the specific case where f = 1/5 on a

square array.

The vortices arrange in these special superlattices as a result of their mutually

repulsive interactions and each individual vortex's interaction with the underlying lattice.

An individual vortex sees the array of junctions as a periodic two-dimensional energy

potential. The vortex has a minimum energy when centered on an array unit cell and a

higher energy when centered on one of the junctions. Thus an energy barrier exists

between adjacent unit cells. This energy barrier was calculated by Lobb et al. (1983) to be

EB = 0.2Ej. Using the same method, Rzchowski et al. (1990) calculated the 2D vortex

potential energy as a function of vortex position throughout the array. The resulting 2D

'egg-carton' potential for a single unit cell in the array is shown in Fig. 1.5. The minima in

this potential act as pinning centers for the vortices.

The vortex superlattices for the commensurate magnetic fields, where f = p/q, were

shown by Teitel and Jayaprakash (1983b) to have qxq unit cells. The vortex superlattice

unit cells for f = 1/2 and f = 1/3 are shown in Fig. 1.6. The commensurate fields (in a

regular array) are periodic for integer f because for an integer number of flux quanta per

unit cell there are no field-induced currents and the array behaves as in zero field. There is

also a symmetry about f = 1/2, because for this field the vortices are the most closely

packed (see Fig. 1.6a), one in every other unit cell; the superlattices for fields above f = 1/2

have the same superlattice unit cells as their symmetric fields below f = 1/2 except that all

current directions are reversed. For example, the f = 2/3 superlattice has the same

superlattice unit cell as that for f = 1/3 shown in Fig. 1.6b except that the currents flow in

the opposite direction. Thus for 1/2 < f < 1, vortices of current with opposite sign from

those for 0 < f < 1/2 will determine the properties of the array.

Some of the properties of arrays in commensurate magnetic fields have been studied

a great deal. The transition temperature, To(f), and the critical current, It(f), for a square

array have been shown theoretically (Teitel and Jayaprakash, 1983; Shih and Stroud, 1983

13



(a) f = 1/2

(b) f = 1/3

Fig. 1.6. Unit cells for vortex superlattice ground state (T = 0)
configurations with zero bias current. Arrows indicate the direction of
current flow. The shaded unit cells are regions of positive vorticity. a) f =
1/2, q = 2, with currents equal to i sin(r/4); b) f = 1/3, q = 3, with currents
equal to icsin(x/3).
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Fig. 1.7. (a) Theoretical calculations (Teitel and Jayaprakash, 1983b) of
phase transition temperature To(f) and zero-temperature critical current I,(f)
for different commensurate magnetic fields. (b) Experimental measurement
of magnetoresistance (see Chapter 3) showing minima near the strongly
commensurate fields. Both graphs show the periodicity for integer f and the
symmetry about f = 1/2 of these measurable properties of a 2D array in a
magnetic field.
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and 1985) to be periodic for integer changes in f and symmetric about f = 1/2. These

results are plotted in Fig. 1.7a. Experimental measurements of the magnetoresistance (see

Section 3.3.2), R(f), also show this particular symmetry, an example of which is plotted in

Fig. 1.7b. T,(f) and I,(f) have their largest values and R(f) has the sharpest minima for

these commensurate fields where the vortex superlattice is the most strongly coupled to the

underlying array. This occurs when f is the ratio of small integers, namely when f = 0,

1/4, 1/3, 1/2, 2/3, 3/4, and 1, for a square array. We will define these particular fields as

'strongly commensurate' fields. In Chapter 4 we will show that the rf effects in the

presence of commensuration have the same symmetry with the magnetic field.
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CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Fabrication Methods

The fabrication of 2D SNS arrays in this group has developed considerably over the

years. David Abraham (1983) made the first arrays by evaporating lead (Pb) through a fine

metal mesh, forming large square-shaped islands on top of a thin copper (Cu) film. In

order to reduce the size of the junctions and improve the controllability of the fabrication

process, Martin Forrester (1988) developed photolithography techniques for patterning the

arrays. These arrays were cross-shaped Pb islands on a copper film, where the islands

were created by patterning photoresist islands on a Pb-Cu bilayer and then removing the

unwanted Pb by ion beam-etching.

We have further improved on the array fabrication process by using a more robust

superconductor, niobium (Nb). The advantages of arrays made of Nb versus Pb are

threefold: Nb is a refractory superconductor that is very hard, it has a higher

superconducting transition temperature, Tc, and the fabrication techniques that can be used

allow greater flexibility, uniformity and control of the junction characteristics. The

refractory nature of the Nb allows the arrays to be repeatedly cycled between 4.2K and

room temperature with no change in physical characteristics, and without the need for an

insulating passivation cap, which was required for the Pb-Cu arrays. The higher Tc, - 9K

for Nb makes the interesting temperature range for studying the arrays more convenient,

because the Kosterlitz-Thouless transition temperature can be increased to a more accessible

temperature near 4K.
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Other advantages for the Nb-Cu arrays are a result of improved fabrication

processes. Nb can be reactive-ion-etched (RIE), which is a much lower energy process

than ion beam-etching, thereby causing less damage to the junction region. Furthermore,

ion beam-etching can not ensure junction uniformity over large (1cm x 1cm) array areas as

a result of the narrow beam size, and the reproducibility of the junctions is limited by visual

monitoring of the etch process (because the beam is shut off manually when the copper film

appears). The junction uniformity in the Nb-Cu arrays is limited solely by the uniformity

of the photolithography processing since the reactive-ion-etching automatically stops when

it reaches the copper.

One of the disadvantages of our Nb-Cu array process is that the bilayer is not made

in situ, thus requiring an rf argon ion-etch step to remove the copper oxide that forms in

transit. This additional step, however, does not noticeably degrade the junction quality or

uniformity.

The change from Pb to Nb required the development of a number of new fabrication

technologies, including magnetron sputtering, rf cleaning and etching, reactive-ion-etching,

and inverting photoresist. We will briefly describe the fabrication process below and then

discuss in detail the design of the magnetron sputtering machine and the if etching process.

A detailed description of the Nb-Cu array fabrication procedure is contained in Appendix 1,

and an outline of the steps is shown in Fig. 2.1.

Our two-dimensional arrays consist of 1000 by 1000 Nb-Cu-Nb proximity-effect

junctions. Sample fabrication is begun by thoroughly cleaning a 1" square and 0.025"

thick sapphire substrate which has been polished on both sides. The substrate is then

prepared with a photoresist 'trilayer,' consisting of an exposed layer of photoresist, a thin

layer of Al, and an unexposed layer of photoresist on top. This trilayer technique is a

simple method for creating a thick undercut that will allow the thick Nb-Cu bilayer to lift

off easily after deposition. We expose the top photoresist layer using various masks to

define the dimensions of the array and the measuring leads. (A number of measurement
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1) Photoresist pattern array dimensions, rf clean substrate, evaporate Cu

.0.35gm Cu

Sapphire substrate

2) Move to sputtering machine, rf Ar ion etch Cu, sputter Nb

0.2 grm Nb
0.30pim Cu

3) Lift-off Nb-Cu bilayer, pattern islands with inverting photoresist

,(-- photoresist

4) Remove Nb between islands with SF6 reactive ion etch

5) Remove photoresist with stripper

Fig. 2.1. Outline of Nb-Cu array fabrication process.
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lead configurations were used, including the superconducting and normal metal contacts

shown in Fig. 2.6, requiring slightly modified fabrication steps. These bilayer masks were

all made lithographically in our lab.) The photoresist is exposed with 400nm wavelength

ultra-violet light on a Karl Suss (model MJB3) contact mask aligner, which can easily

expose Igm minimum features. We then develop the photoresist and complete the trilayer

processing to create a l-3gm undercut around the edges.

The sapphire substrate is then mounted in the evaporator, where it is cleaned with an

rf argon (Ar) plasma prior to thermally evaporating the 0.35gm thin-film of high purity

copper (99.999%). The rf cleaning step improves the adhesion of the copper to the

substrate by removing H20 molecules bonded on the surface. The substrate is then moved

to the magnetron sputtering machine (see Fig. 2.4) and mounted on a 60"F water-cooled

substrate holder. The sample is rf Ar ion-etched (see Fig. 2.5) to remove any oxide that

may have formed on the surface of the copper. About 50nm of copper is removed and

then 0.2grm of niobium is sputtered immediately (within 1 sec) to ensure that a clean

interface is formed. The photoresist is then lifted off with acetone, leaving behind on the

substrate, a Nb-Cu bilayer in the pattern of the array and measurement leads.

Cross-shaped niobium islands are then formed by patterning photoresist islands with

inverting photoresist on the bilayer and then reactive ion etching with SF6 to remove the

unwanted niobium between the islands. An inverting photoresist (AZ-5214E from

Hoechst, Inc.) was necessary because the commercially-made mask for the islands of the

large 1000xlOOO array (by Advance Reproductions, Andover, Mass.) was of the opposite

sign (no chrome inside the crosses). To complete the array fabrication process, the

photoresist is removed with stripper and rinsed with H20, leaving behind an array of Nb

islands on top of a copper film with measuring leads.

A 3D schematic of a two-island region of the completed array is shown in Fig. 2.2,

and a photograph of a small region of a 1000xlOOO Nb-Cu array is shown in Fig. 2.3.

The islands have a lattice constant, a, of 10gim and the proximity effect weak links,
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D Niobium

ECopper
SSapphire

Fig. 2.2. 3D schematic showing a region of the completed array near two
of the Nb islands. The relevant sample and junction dimensions are shown.
The junction region lies between the tips of the crosses, having length
d = 2pm and width w = 4.im. The distance between the centers of the Nb
crosses determines the lattice constant of the array a = 10pm. The thin-film
thicknesses are 0.2gm of niobium and 0.3 jim of copper. The sapphire
substrate was generally 0.025" thick.

21



Fig. 2.3. Photograph 01 a small region of a 1000 by 1000 Nb-Cu array.
The crosses are the niobium, islands lying on top of the copper underlayer.
The periodic lattice spacing between the centers of the islands is a 10p~gm.
The niobiumn is O.2ptrm thick and the copper is 0.3grm thick.
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consisting of the underlying copper between the islands, are defined by the width k4jm) of

the arms of the cross and the separation (2gm) between their tips. Two single junctions

with the same geometry as the junctions in the array are concurrently made adjacent to the

array on the same substrate, and are used for characterizing the single junctions as will be

discussed in the following chapters. There are actually 1400x1000 Nb islands in the array

(as shown in Fig. 2.6), but we place the voltage leads 1000 junctions apart in order to

measure a square 1000x 1000 junction array. Because the array is square, it will have the

same normal state resistance as the single junctions (typically Rn-2mQ), determined

primarily by the copper.

The magnetron sputtering system was originally dedicated to Nb, although an Al

magnetron was added later for making Nb-AI20 3 -Nb junctions for dc SQUIDs (see

Appendix II). Magnetrons are generally the best for making high purity Nb films because

the magnets inside the water-cooled target holder enable a higher density plasma to be

generated, so that higher sputtering rates can be achieved with lower Ar pressures. The

pumping system consists of a 6" diffusion pump, backed by a 35 cfm Welch rotary pump.

A large (10 liter, 18 hour holding time) liquid N2 cold trap with an anti-migration baffle

(Cooke Vacuum Products, Inc.) above the diffusion pump is essential for obtaining low

base pressures and for keeping most of the pump oil out of the chamber. With this

pumping system, the chamber can be pumped down to pressures as low as 2x I 0-8 T. The

gases are controlled (typically 35 sccm) by flow meters and controllers (MKS Instruments,

Inc.), and the Ar pressure (6mT) during sputtering is monitored by a capacitance

manometer (MKS Instruments, Inc.). The dc power supply for the magnetrons can

provide up to 1000V, but is typically operated at 500V, giving a l50mA current for Nb

sputtering at the flow rate and pressure mentioned above. The sputtering rate for Nb at the

above parameters was -.20nm/min for our small 1- 1/2" diameter magnetrons. The chamber

design is shown and described in detail in Fig. 2.4. The Ferrofluidic rotary feedthrough
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electrical and

water cooling lines Ferrofluidic

rotary
feedthrough

~liquid
rotating water-cooled N2 -cooled

substrate holder Meissner
4 shroud

removable
divider

Nb Al
magnetron magnetron

diff. pump
flap

to gate valve

Fig. 2.4. Magnetron sputtering chamber design. The substrate is mounted
on a water-cooled holder that can be rotated above two dedicated magnetron
targets (Nb and Al). A circular, liquid N2-cooled Meissner shroud is placed
between the targets and the substrate holder to help getter impurities during
pre-sputtering and to act as a shield (or fixed shutter) by rotating the
substrate holder away from the holes directly above the magnetrons. The
diffusion pump flap is used to increase the chamber pressure quickly when
igniting a plasma. An rf plasma can be applied to the substrate (see Fig.
2.5) for rf cleaning or ion etching.
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RF Matchbox

75pF rf capacitor

W00000 200kf A Ma
tunable
inductor O. lgF 500jiA

T metier

--------------....

copper tube to holder

13.56MHz generator

wate-coledsubstrate holder

Copper

S Stainless steel............D' Teflon insulation---
Saphr insuat dark space shield substrate clamp
Sapphire substrate

Fig. 2.5. RF argon cleaning and ion-etching circuit for sputtering machine,
showing details of the rf matchbox and substrate holder. The dc self-bias
voltage of the plasma is measured through the matchbox meter, by selecting
the appropriate resistor, 200KO, lMI, or 2MO, the full scale voltage can
be selected to be 10OV, 500V or lkV. The inductor is used to tune the
resonance of the circuit in order to match the impedance of the plasma.
When the matchbox is used to rf clean in the evaporator or to reactive ion
etch, the rf capacitor must also be changed (to 25pF) to help tune the circuit
to the very different rf plasma impedance. The height of the grounded dark
space shield above the sample is important in determining the plasma
characteristics and should be kept at -1/8-1/4".
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was a very important addition to the system, because the previous o-ring rotary

feedthrough did not hold a tight vacuum when it was turned.

The other crucial addition to the system was the achievement of good rf coupling at

high powers through the long 1 "copper tube and down to the substrate holder, which was

necessary for the rf Ar ion-etching. A detailed drawing of the rf circuit and substrate holder

is shown in Fig. 2.5. An rf 'matchbox' with a variable inductor is used to match the rf

impedance of the 13 56MHz (Advanced Energy, Inc., model RFX-600) rf generator to the

rf plasma. The matchbox has a meter that monitors the dc self-bias voltage, V&, across the

plasma, which is an important plasma characteristic. For rf cleaning Vd is typically 250V,

while for if etching 600V is generally required.

2.2 Measurement Techniques

The substrates are mounted in a measurement rig (described below), which is placed

in a temperature-controlled, g-metal shielded, 4 He cryostat inside a screened room. The

g-metal shielding screens out external magnetic fields to better than - 0.lmGauss, as

estimated from the array measurements. The screened room is not generally necessary.

The sample rig, which has undergone many modifications since it was originally built, is

described in detail in Abraham (1983) and Forrester (1988). This rig is essentially a four-

point measurement probe with a temperature-controlled substrate block inside a vacuum

can. The rig has been modified to reduce the number of solder joints near the sample

block, in order to minimize field non-uniformity caused by superconducting solder. The

substrate is mounted on the copper block and then a Pb-free "Naval Brass" can is slid over

it and sealed with an indium o-ring. This can is evacuated and then back-filled with a very

small amount of He exchange gas, so that the sample block can be heated above the

temperature of the liquid-He bath. A 10cm long, 5.5cm diameter copper solenoid is

mounted outside of this can, and centered around the sample, so that a uniform
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perpendicular magnetic field can be applied to the array (-13mA/Gauss). One cDo per unit

cell in the array (f = 1) required H - 200mGauss. Using a regulatable pumping system,

the pressure in the cryostat can be reduced so that the temperature of the He bath can be

controlled down to a minimum of - 1.35K. The temperature of the substrate and sample

block is controlled with a Lake Shore Cryotronics Temperature Controller (model DRC-

91C) through a heating resistor and a calibrated germanium thermometry resistor (Cryocal

#4033, 10870 @ 4.25K), both of which are mounted on the sample block. The

temperature of the substrate in the vacuum can easily be controlled from 1.35K to 10K with

a stability of better than 1 mK.

The electrical wiring of the low temperature rig uses twisted pairs of 36 and 40

gauge copper wire for the current and voltage leads, respectively. The wires are wound

with many turns onto two separate copper block stages at the bottom of the rig to improve

the heat sinking of the leads and reduce the effects of thermal enf s on the sample. The

wires are connected to the measurement contacts on the substrate using pressed indium-dot

contacts. The two different 'four-point' measurement circuits that were used are shown in

Fig. 2.6. These circuits enabled a number of different measurements to be taken, including

current vs. voltage (I-V), dynamic resistance (dV/dI) vs. current (or voltage), and dynamic

resistance vs. perpendicular magnetic field curves. Fig. 2.6a shows how separate pairs of

superconducting bus bars were used to current-bias the array and to measure its voltage,

with either a lock-in amplifier or a nano-voltmeter. Fig. 2.6b shows the normal metal

contact configuration that had better performance at low temperatures, as will be discussed

in Section 2.3.

We used a PAR 124A lock-in amplifier at 45.5Hz, with a PAR model 116 1:100

transformer at the input to improve the impedance match from the low-resistance array.

The rms amplitude of the ac current through the sample was always chosen at least 100

times smaller than the measured critical current of the array (see Chapter 3). Under these

conditions, measurements with a sensitivity better than InV could be obtained with lock-in
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Lock-in or I&, Iff, and
nano- Lock-in mod.Cvoltleterm current

| E Nb bus bars

JMarray

Fig. 2.6. (a) Measurement circuit for sample with superconducting busbars

0Cu pads

EM array

NIde, Irf,
nand

o nvolteterLock-in
mod. cur.

Fig. 2.6. (b) Measurement circuit for sample with normal metal contacts
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time constants less than Isec. A home-made battery-powered supply was the dc current

source of choice (for its lower noise characteristics), although an HP 6181B dc current

supply had to be used when larger currents (>100mA) were required. The rf signal

generator was an HP 8656B signal generator with a frequency range of 0.1-990MHz. The

nano-voltmeter was a Keithley Instruments model 148. Its available sensitivity was not

fully used for the arrays, typically being operated only in the 0. 1- 1.OV scales, because the

array voltage was N = 1000 times larger than the single junction voltage, V = Nv. The

nano-voltmeter was very useful, though, when measuring the single junctions. Ground

loops caused some difficulties in the measurement circuit, but were broken by using a 1:1

transformer on the lock-in modulation signal output and 0.1 .lF blocking capacitors on the

rf signal generator output. The data were initially plotted on an HP 7045B analog XY

recorder and then digitized for computer analysis.

2.3 Experimental Details

A number of important sample-dependent characteristics greatly influence, and

sometimes limit, the measurability of the arrays. The most influential characteristic, after

the Kosterlitz-Thouless transition temperature, is the temperature dependence of the single

junction critical current, ic(T). The junctions that make up our arrays arrays are SNS

junctions which are weakly coupled for the temperature range of interest. Their critical

current is, therefore, an exponential function of temperature (De Gennes, 1964):

i,(T) = ic(0) I-T exp( - ), (2.3.1)

where T,, is the transition temperature of the superconductor, 4N is the coherence length of

the normal metal barrier and d is the effective separation between the islands (see Fig. 2.2).

Our junctions follow this temperature dependence very well for the dirty limit form of 4N
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(see Deutscher and De Gennes, 1969). This experimental temperature dependence for ic(T)

is very important because it determines the temperature dependence of the junction's

characteristic frequency as discussed in Section 1.2, and also the coupling energy that was

discussed in Section 1.3.

It is desirable to make measurements at temperatures well below T, to avoid the

effects of thermally excited vortices that are predominant near the Kosterlitz-Thouless

transition temperature. Experimentally, the temperature dependence of i,(T) will limit our

ability to effectively measure large arrays at low temperatures, where ic(T) becomes

exponentially large. The bias current required for arrays is proportional to the number of

junctions across the width, M, of the array, Id, = Mibij, where ibi. is the bias current per

junction (Section 1.2). From (1.3.1) we can estimate I,(T) by assuming E1*(Td) Ej(T,)

so that Ic(Tc)/MT c = 26.7nA/K. Thus the critical current of arrays is typically Ic 0. 1mA

near T, (for M = 1000 and T, - 3.5K), and becomes as large as 10-100mA for 1-2K lower

temperatures according to (2.3.1).

The necessary higher currents at low temperatures limited the usable temperature

range for the circuit in Fig. 2.6a. At low temperatures (T < 2K), this circuit with

superconducting bus bar measurement leads, exhibited a current-dependent magnetic field

offset at high-currents (I > 5mA). For example, at T = 1.62K and Idc = 9.2mA

(IC = 28mA), an offset field of 0.0264.0 per unit cell or - 6mGauss was observed in

magnetoresistance measurements (see Chapter 3). This offset field limited the maximum

allowable bias current for this asymmetric current configuration, so that it could only be

used at higher temperatures (typically T > 2K) where larger currents were not necessary.

To avoid this current-induced offset field, which resulted from the asymmetric current-

injection leads, we modified the circuit to use large triangular pads at the ends of the array,

as shown in Fig. 2.6b. Normal metal pads and leads were chosen, instead of

superconducting Nb, to avoid field-screening effects from large superconducting areas,

thus improving the uniformity of the applied magnetic field in the array.
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Two related sample-dependent properties also limited the temperature range of our

measurements: the geometrical inductance of an array unit cell, L, and the kinetic
inductance per square of the array, LK. The kinetic inductance is related to the renormalized

coupling energy, Ej*(T), discussed in Chapter 1, through the following equation

LK(T) = 2ei(T) (2.3.2)

where ic*(T) = 2eEj*(T)/h is the renormalized critical current per junction. At low

temperatures, i,*(T) - ic(T) so that the kinetic inductance per square of the array is

approximately equal to the Josephson inductance, LK(T) - Lj(T). The geometrical

inductance, L, begins to play a role in the response of arrays when L > Lj(T), which

occurs at low temperatures when Lj(T) becomes small, due to the exponential temperature

dependence of i,(T) in (2.3.1). This change is analogous to the behavior of dc SQUIDs

where 3L = U/rLj(T) = 2i(T),L/0 0 = 1 gives a 50% modulation in the maximum critical

current between the f = 0 and f = 1/2 fields (see Tinkham, 1975, pp. 2i5-216). We also

see a 50% change in the critical current modulation of one of the arrays for f = 0 and

f = 1/2 (see Section 3.4) at a temperature T = 1.65K (for an array with Tc = 3.5K), where

ic = 100pA. If we use the analogy with the dc SQUID, we can estimate the geometrical

inductance of the array unit cells to be L - lOpH. We can also estimate L using a numerical

determination for the inductance of a flat, thin-film superconducting washer by Chang (see

Chang, 1981 and Jaycox and Ketchen, 1981) who found that L - 1.25 p0a, where a is the

diameter of the square washer hole. This gives L - 1OpH for a = 10pm, which is in very

good agreement with our experimental estimate. Thus, our experimental measurements

will be limited to temperatures above 2K, so that we are not dominated by geometrical

inductance effects. All the data presented in the following chapters were taken at
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temperatures well below T in order minimize the effects of thermally-induced vortex pairs,

but not so low as to be influenced by the geometrical inductance of the array.

Another sample characteristic that could influence our measurements is the magnetic

field-screening length, X.L. This quantity is also related to the renormalized energy, E1*(T),

through the proportionality with the kinetic inductance per square, ,±(T) = LK(T)/11.

Using the relation in (1.3.1), Lobb etal. (1982) showed that X_±(T,) = (9.82 mm K)/T,'c

which will always be smaller than our lcm array size (for N, M = 1000 junctions). For

example, when T, = 3.5K we have XL - 2.8mm. At lower temperatures, the temperature

dependence of ic(T) will further decrease X_.(T). This is not a problem, however, for our

dynamical transport measurements, as will be discussed in Chapter 3, because we are

interested only in the measured properties when the array is in the resistive state and the

magnetic fields can penetrate uniformly.
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CHAPTER 3

CRITICAL CURRENTS IN FRUSTRATED ARRAYS

3. 1 Introduction

In defining the critical current of a superconductor, one must distinguish between the

intrinsic critical current Ic, which is the maximum supercurrent for which a metastable

state exists, and the (lower) current L6. at which resistance becomes observable because of

thermally activated processes.' Although ICR has practical importance, it has neither

fundamental significance nor a unique value, because it depends on the sensitivity of the

experiment that defines it. It is the intrinsic I, which enters into fundamental analyses,

including the theoretical determination of the onset of resistance. The relation between I.

and L6 was worked out long ago for single heavily damped Josephson junctions (by

Ambegaokar and Halperin, 1969) and for one-dimensional filaments (by Langer and

Ambegaokar, 1967 and McCumber and Halperin, 1970). However, this relationship is

much less well understood in two-dimensional arrays of Josephson junctions or other weak

links, because of the important and complicating role played by flux quanta in the

description of an extended system. This type of system is currently attracting much

attention as a model system for naturally occurring granular superconductors, particularly

the high temperature superconductors. In this chapter 2 we address the issues of critical

'In this chapter, we use Ic instead of Ic to emphasize the fundamental nature of the
intrinsic critical current. ice is equivalent to the single junction ic previously discussed in
Chapters I and 2.

2A preliminary account of this work was given by Benz et al., 1989 and much of this
chapter has been submitted for publication in Phys. Rev. B, Benz et al., 1990b.
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currents and resistance in such arrays from both experimental and theoretical points of

view.

In recent work in this laboratory, the rf response of arrays (Benz et al., 1990) and

the effects of pinning (Rzchowski et al., 1990) have been investigated experimentally. The

analysis of these data depend crucially on knowledge of the Josephson coupling energy E,

of the junctions of the array, or, equivalently, their intrinsic critical currents i.,, because the

energy barriers to vortex motion and the characteristic frequency of the overdamped

junctions are both proportional to this critical current (see Chapter 1). In this chapter we

present new experimental measurements of the dynamic resistance at finite voltage as a

function of both dc bias current and perpendicular magnetic field (or f) at a temperature far

enough below Tc(f) that the effects of thermally induced vortices, domains, and other

defects are not important, 3.4 and yet not so low that the flux Li,. per cell has become

comparable to 0 (see Section 2.3).5.6 We discuss how intrinsic unfluctuated critical

currents both for single junctons and for the array may be extracted from these data by

using the analogy with thermal activation of an overdamped particle in a periodic potential

(Sections 3.2-3.4). These experimentally determined critical currents will be compared

with theoretically predicted results in Section 3.5. And in Section 3.6 we will present a

3The magnetoresistance and I-V characteristics of overdamped arrays have previously been
measured only very close to T,(f = 0): M.Tinkham et al., 1983; Brown and Garland,
1986; Springer and Van Harlingen, 1987; Resnick et al., 1984; Kimhi et al., 1984;
Gordon et al., 1987.

4Arrays of underdamped junctions exhibit hysteretic I-V curves and behave very differently
from overdamped arrays, although the field modulation of the subgap resistance, R0 (f)
behaves similarly to the magnetoresistance in underdamped arrays: Voss and Webb,
1982; Webb et al., 1983; and van der Zant et al., 1988.

5This is analogous to self-induced fields affecting the magnetic field modulation of the
critical current in a dc SQUID: Tinkham, 1969, pp. 215-216 (see Section 2.3).

6At these temperatures the penetration depth for a perpendicular magnetic field is smaller
than the array size. However, in the highly resistive regime of our measurements, the
currents flow uniformly, and this is not an important effect (see Section 2.3).
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new exact analytical calculation of the ground state critical current for the fully-frustrated

case, f = 1/2, and a precise numerical calculation for f = 1/3.

3.2 Thermal Fluctuations in Single Josephson Junctions

As discussed in section 1.3, the junctions that make up our arrays are highly

overdarnped. 7 In 1969, Ambegaokar and Halperin theoretically determined the effect of

thermal fluctuations on the current vs. voltage (i-v) characteristics of single junctions.

Figure 3.1(a) shows a number of single junction i-v curves with various amounts of

thermal noise as determined by the ratio of the zero-bias-current energy barrier to the

temperature, r = EB/kT, where EB = 2Ej = hicd/e. Figure 3.1(b) plots the dynamic

resistance vs. current for a single junction with amounts of thermal noise similar to the

curves in Fig. 3.1(a). Using this theory it has been shown (Falco et al., 1974) that a peak

in dynamic resistance vs. current (dv/di vs. i) occurs at a current which is within a few

percent (< 2%) of ic, the intrinsic critical current in the absence of fluctuations, so long as

fluctuation effects are small enough that the peak value of dv/di is at least 1.5 times larger

than the high-current limiting value of dv/di. This can be seen in Fig. 3.1(b) for r > 20,

where the temperature fluctuations are small enough that a prominent peak in the dynamic

resistance is apparent.

Thus, for single junctions the position of this peak is a very good measure of the

unfluctuated critical current. It is important to note that the onset critical current, iCR,

defined experimentally as the lowest current giving measurable voltage, would give a much

poorer estimate of the unfluctuated critical current io, because the relation between this icR

and the intrinsic ico, as determined by Ambegaokar and Halperin, is strongly dependent on

7An overdamped junction has Pc = 2eicR 2C/h < 1, where C is the capacitance of the
junction. Our single junctions have negligible capacitance so that 3

c << 1 (see Section
1.2).
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Fig. 3.1. (a) Single junction voltage vs. current Curves with thermal
fluctuation induced rounding as determined by Ambegaokar and Halperin
(1969). r = EB/kT = hico/ekT is the ratio of the energy barrier to the
temperature, and determines the magnitude of the thermal fluctuations.
(b) Dynamic resistance vs. current curves with thermal fluctuations similar
to the i-v curves in (a) from Falco et al., 1974. For large r the peak gives a
very good estimate of ic..
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the ratio of the the energy barrier to the temperature, F = hiJekT. Figure 3.1 (b) shows

this effect very clearly; for example, the onset critical current, defined at the 0.05r n

resistance threshold indicated by the dotted line, will approach zero as thermal fluctuations

are increased, i.e. as F decreases to 10, while the peak in dv/di stays near i,0 . For higher

voltage sensitivities, the onset critical current yields even worse estimates of iae.

3.3 Experimental Array Results

3.3.1 Critical Currents in Strongly Commensurate Fields

Curve (a) in Figure 3.2 shows the dynamic resistance vs. current in zero field for

our 1000 by 1000 array. (A description of the experimental measurement circuit can be

found in Section 2.2) Notice that a prominent peak appears in this f = 0 curve at about

7mA. This can be understood as follows: In zero field, an N by M array behaves as a

series-parallel network of identical single junctions, so that its I-V curve will be the same as

that of a single junction, apart from scaling the current by M and the voltage by N, so that

I = Mi and V = Nv, where i and v are the single junction current and voltage. The

normal-state resistance of the array is related to that of the single junction by

Rn = (N/M)r,.

From the analysis on single junctions in Section 3.2, it follows that the measured

current where the dynamic resistance of the array in zero field is a maximum should give a

good estimate of the intrinsic unfluctuated critical current Ico(T) of the array. This, in turn,

should be related to the single junction critical current, i,0 , simply by Ic. = Mico, where

M = 1000 is the number of junctions in parallel across the width of the array perpendicular

to the current. This conclusion is supported by the fact that i.0 = Ico/M agrees within 10%

with the ico's for the two single junctions fabricated on the same substrate with the array

and measured in the same way. Further justification for using the peak to determine the
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Fig. 3.2. Dynamic resistance vs. current for a 1000 by 1000 array at
T = 2.09K for three commensurate perpendicular magnetic fielIds:
a) f = 0, b) f = 1/2, and c) f = 1/3. The rms lock-in modulation cirrent
was 30g.A. The data were taken on an XY recorder and then manually
digitized for computer analysis.
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unfluctuated array critical current follows from noting that the temperature dependence of

the inferred array critical current follows the exponential temperature dependence (2.3.1)

expected for the intrinsic critical current of a single weakly coupled SNS junction

(De Gennes, 1964).

The dynamic resistance vs. current was found to vary greatly for different magnetic

fields. Figure 3.2 also shows dV/dI vs. I for two commensurate magnetic fields, f = 1/2

and 1/3, at the same temperature as the f =0 curve. The dV/dI vs. I curves for f = 2/3 and

1 (not shown) are nearly identical to the f = 1/3 and f = 0 curves, respectively, thereby

establishing the symmetry about f = 1/2 and the periodicity for integer changes in f (see the

theoretical predictions in Fig. 1.7(a) of Chapter 1). For these strongly commensurate

magnetic fields, weaker local peaks in dV/dI occur at currents lower than that for the peak

in zero field. By analogy with the single junction and f = 0 cases, we associate these peaks

with the intrinsic unfluctuated critical currents for these f-values, Ico(f). For other

commensurate fields, where the vortex superlattice is less strongly coupled to the array,

such as f = 1/4, 1/6, etc., we observe similar structure in the dynamic resistance at low

currents, but the peaks are even less pronounced and have become only rounded inflection

points, making it very difficult to make a quantitative inference of I.,. This structure will

be discussed in more detail in Section 3.4.

3.3.2 Magneto resistance

To obtain information about the dynamic resistance at fields other than the 'strongly

commensurate' fields, the magnetoresistance (dV/dI vs. f) was measured at temperatures

well below Tc(f) for various fixed bias currents; three such curves are shown in Fig. 3.3.

Curve (a) shows the behavior at a current, 0.7mA, only slightly above the current at which

the dynamic resistance first becomes measurable, I = 0.92mA - I.. Relative minima in the

magnetoresistance are observed for f = 0, 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6, and 1, each
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Fig. 3.3. Magnetoresistance at T = 2.09K for three different dc bias
currents: a) 0.92mA, b) 1.84mA and (c) 2.79mA. Note that the left and
right vertical scales differ by a factor of five. Minima in the dynamic
resistance coincide with magnetic fields where the vortex superlattice is
strongly commensurate with the array of junctions, namely f = 0, 1/6, 1/4,
1/3, 1/2, 2/3, 3/4, 5/6, and 1.
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corresponding to a field where the vortex superlattice is strongly commensurate with the

junction array (see discussion in Section 1.2). The symmetry around f = 1/2 is again

apparent. As the bias current is increased from - IcR, the relative minima evolve into

relative maxima, beginning with the least 'strongly commensurate' fields which have the

lowest values of I.(f). This is shown in curve (b) of Fig. 3.3 [taken at twice the current as

curve (a)], in which weak relative maxima appear near all the commensurate fields except

for f = 0, 1/2, and 1, which are the most 'strongly commensurate' fields. These subtle

relative maxima in the magnetoresistance occur near the same currents and fields where the

peaks are found in the dV/dI vs. I curves like those shown in Fig. 3.2. Curve (c), taken at

still higher current, 2.79mA, shows the dramatic reversal of the dip at f = 1/2 into a

maximum, which occurs for I - 4~0(f=1/2). This structure is best revealed when the data

are plotted in three dimensions as in Fig. 3.4, which shows dV/dI as a function of both

magnetic field and dc bias current.

3.3.3 Dynamic Resistance vs. Magnetic Field and vs. Bias Current

Figure 3.4 consists of experimental data, digitized from dV/dI vs. f curves

(including those in Fig. 3.3) at small increments of dc current. The dV/dI vs. I curves of

Fig. 3.2 can be reproduced from this data, as can be seen by comparing the nearest edge of

the 3D plot (f = 0) with curve (a) in Fig. 3.2. The symmetry about f = 1/2 is again

apparent from this graph. Similar structure is observed between all integer f. However, at

substantially higher fields (not shown), a reduction in the array critical current is observed,

due to field penetration into the single junctions (Tinkham, 1975, p. 199). The critical

current is approximately zero at a field of f = 9, which accurately corresponds to one

quantum of flux threading each junction. This, however, is not a substantial effect for the

small fields, 0 < f < 1, shown in Figure 3.4 (see also Forrester, 1988, pp. 59-67).
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Fig. 3.4 Experimental data showing the detailed dependence of the dynamic
resistance on both dc bias current and perpendicular magnetic field. The
data were taken from dV/dI vs. f curves at fixed bias currents, digitized and
then interpolated to retrieve points at convenient intervals along the f- and
current-axes.
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3.4 Discussion of Experimental Results

A number of important features are apparent from the experimental data plotted in

Figure 3.4, all of which can be explained qualitatively by considering the array of junctions

to generate a periodic 2D 'egg-carton' pinning potential (see Section 1.2), in which, given

thermal activation, 8 field-induced vortices can move in response to a Lorentz force

proportional to the dc bias current. At 'strongly commensurate' fields, the vortex

superlattice is strongly coupled to the array and not easily depinned. In Fig. 3.4 it is seen

that the peaks in the dynamic resistance indicating critical current values are associated with

the commensurate fields, and that the heights of the peaks get smaller for the less 'strongly

commensurate' fields, starting from f = 0 and 1, to f = 1/2, and then to f = 1/3, etc. We

identify the current at these peaks, like those shown in Fig. 3.2, with the depinning current

of the vortex superlattices from the periodic 2D potential.9 This identification is reasonable

because thermally activated motion of vortices in a periodic potential due to a Lorentz force

is qualitatively similar, as shown explicitly by Rzchowski et al. (1990), to the thermally

activated behavior for a single junction as described by Ambegaokar and Halperin. More

simply, it is plausible on physical grounds that the underlying critical current should be

found at the current at which the resistive voltage increases most steeply. If we choose the

positions of the peaks as estimates for the array critical current for these magnetic fields,

and compare with the zero field case, we find Ico(f=l/2) - 0.42Ic,(f--0) and I.(f=l/3) -

SAC response measurements by Leeman et al. (1986), have shown effects of thermal
activation on pinning at various temperatures.

9 0ur model assumes that the array is uniform and that the entire superlattice depins and
moves across the array. For arrays with non-identical junctions or some other form of
disorder, the motion may be more complex, including effects such as vortex lattice shear.
At higher temperatures close Tc(f) the motion of domains or other thermally induced
defects (see Mon and Teitel, 1989) will contribute to the dissipation and may also destroy
the superlattice.
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0.34Ic(f=O). As we shall see in Sections 3.5 and 3.6 of this chapter, these experimental

critical currents are in reasonable agreement with theoretically calculated critical currents.

The curves in Fig. 3.3 can now be explained. The Lorentz force, due to the dc

current, has the effect of tilting the 2D 'egg-carton' potential. The energy barriers to

motion of the vortex superlattice differ for the different commensurate fields, depending on

the coupling strength between the vortex superlattice and the array. For fields f near the

'strongly commensurate' fields f. it has been suggested (Teitel and Jayaprakash, 1983b

and Rzchowski et al., 1990) that unpaired, field-induced vortices or some other form of

defects dominate the dynamic resistance as they are thermally activated and driven by the

Lorentz force. Since the number of these defect vortices is proportional to If-fcl, the

resistance rises approximately linearly on either side of the minimum at f.. The small

maxima in the magnetoresistance at commensurate fields fc, particularly in the higher

current plots 3.3(b) and 3.3(c), signify that the bias current is very close to the depinning

current, l,(fo), for those particular commensurate fields, i.e. the energy barriers to vortex

motion have been reduced to near zero by the current.

At very high currents all the barriers to vortex motion are reduced to zero and the

array is in a flux-flow regime where all of the field-induced vortices are depinned and

flowing down the tilted 2D potential. This regime can be seen in Fig. 3.4 for fixed currents

between the f = 1/2 and f = 0 critical currents, where the dynamic resistance is rising nearly

linearly as a function of field between f = 0 and f = 1/2 as would be expected in the flux

flow regime of a type II superconductor. The slope of this line, -2.3R, is in good

agreement with the value 2Rn obtained by considering the viscous drag on each vortex

(Rzchowski, et al., 1990). Between f = 1/2 and f = 1 the dynamic resistance decreases

linearly because now vortices of the opposite sign dominate, as discussed in Section 1.2,

and their number is decreasing as f = I is approached. Curve (c) in Fig. 3.3 is at a current

just below this regime, but still shows the nearly linear behavior on either side of f = 1/2.

At currents far above the zero-field critical current, Ico(f = 0), the behavior of the array is
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dominated by the normal shunt resistance of the copper in the junctions, so the dynamic

resistance is essentially independent of both current and magnetic field.

The next interesting feature is that the dynamic resistance is not appreciable for any

value of f when the dc current I < 0.1 I, 0(f = 0) - 0.7mA. We believe this feature is

related to the pinning energy of individual vortices in the array as calculated by Lobb et al.

(1983), EB = 0.2 EI. As verified by simulations (Straley, 1988; Lee et al., 1989; and

Rzchowski et al., 1990), the current required to depin a solitary vortex in the absence of

thermal activation is 0. 1ic. per junction, which is in agreement with our observed total

array current of 0.1I, 0(f=0). The fact that we observe this same minimum depinning

current for all fields, and not just for small fields near f = 0, suggests that the depinning

current for field-induced defects is -0.1 i, per junction near other f. values as well. The

differential resistance peak associated with the depinning of these defects is very small

because the dissipation due to the motion of a small number of defects, - If-fstR w, is very

small, thus forcing us to use a resistive onset criterion in this case. At much lower

temperatures this zero-dissipation plateau region becomes larger due to self-induced field

effects in the array.' 0

3.5 Comparison with Theory

Theoretical estimates for the critical currents of an array in commensurate magnetic

fields have been obtained by a number of different methods. Teitel and Jayaprakash

(1983b) used Monte Carlo simulations with a twisted-phase method to induce a dc current

in order to determine the zero-temperature ground state critical current for various fields.

Shih and Stroud (1985) used a molecular-field approximation with the twisted-phase

'°At these lower temperatures, self-induced fields are generated by the larger currents in the
array because of the geometrical inductance, L, associated with the array unit cells (see
Section 2.3). The plateau region is approximately 50% of Ic(f=0) at T = 1.65, giving an
estimate for L - lOpH.
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method and found similar critical currents. From their published data we find their critical

current estimates for f = 1/2 and f = 1/3 to be I(f = 1/2)/I,(f = 0) - 0.41±0.01 and

Ic(f=1/3)/I,(f = 0) - 0.26±0.01. We have made exact critical current calculations for both

of these fields by calculating the current dependence of the gauge invariant phase difference

across each junction. This method is discussed in Section 3.6 in detail for f = 1/2, and

sketched for f = 1/3. From these calculations we find analytically Io(f = 1/2)/Ico(f = 0) =

42-1 = 0.41421 and I,(f = 1/3)/Ico(f = 0) = 0.26789. Similar results were found

numerically by Halsey (1985). The results of the simulations mentioned above are in

excellent agreement with these exactly calculated values. For convenience of comparison,

the measured, exactly calculated, and simulated critical current ratios are all collected in

Table I.

Table I. Comparison between measured, exactly calculated, and numerically simulated
critical currents.

f XIA()I()Imeas Ic(f)/Ic(Olexact ICMf)AJO)Ysim

0 1 1 1

1/2 0.42 ± 0.02 0.414214 0.41 ± 0.01

1/3 0.34 ± 0.02 0.26789 0.26 ± 0.01

The estimated critical current ratio for f = 1/2 from our experimental measurements

(-0.42) is also in excellent agreement with the exact critical current, but for f = 1/3 the peak

in the dynamic resistance appears at a current (-0.34) that exceeds the theoretical value.

The position of the rounded peaks in Fig. 3.4 for the other less 'strongly commensurate'

fields also appear to overestimate I0(f) compared to the simulated zero-temperature values.

A possible reason for this discrepancy is that the peaks are more rounded for the less
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'strongly commensurate' fields, probably due to more thermal activation over their lower

energy barriers. In the Ambegaokar and Halperin model (Section 3.2), for smaller values

of F = EB/kT the peak in dv/di is suppressed in magnitude and shifts toward currents

slightly higher than ico (see Fig. 3. 1(b) for r 10); the analogous effect in arrays would

cause our use of the measured position of the peak to also yield an overestimate of c.(f) for

the 'less strongly commensurate' fields due to small values of EB(O)/kT. Non-uniformities

in the array may also contribute to the rounding of these peaks because at the 'less strongly

commensurate' fields the vortices interact more weakly over the larger separation distances,

and thus they may be more susceptible to variations in junction coupling energies and other

non-uniformities.

3.6 Analytic Solutions for f = 1/2 and f = 1/3

We have made an exact calculation of the critical current for the f = 1/2 ground state

using periodicity and other symmetry arguments to restrict the number of independent

gauge-invariant phase differences across the junctions in an infinite array. In our solution,

we assume that, as for the zero-current ground state, the current-carrying ground state is

made up of vortex superlattice cells of size 2,, junctions, and that the phase differences

deform continuously in response to a net imposed current until the intrinsic critical current

is reached, above which no static solutions exist. This ground state configuration is shown

in Fig. 3.5, where the gauge-invariant phase differences across the four non-equivalent

junctions are denoted by a, 3, 0', and y. For zero net current, all of these phases are equal

to 7c/4. A net current applied from left to right will break the symmetry of the ground state,

so that a and y will have different values. If there is no net current in the vertical direction,

symmetry requires that 13= 13'.
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Fig. 3.5 Ground state 2x2 superlattice unit cell for f 1/2, showing the
positions of the gauge-invariant phases, a, 3', A, y, used to accommodate a
net dc bias current in the horizontal direction. By symmetry, 0' must equal
0 when there is no net current in the vertical direction. The shaded arrows
represent ground state supercurrents across the junctions and have equal
magnitude ico/42 for zero dc current bias. The lines between the vertices
correspond to the junctions between the superconducting islands.
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With these assumptions we can write down the following constraining equations.

For f = 1/2, fluxoid quantization requires that

a+y+2=n (mod2n). (3.6.1)

Current conservation at each node in the array is satisfied if

sin0t + siny = 2sin3 . (3.6.2)

Finally, the average net current per junction in the horizontal direction, normalized to the

single junction critical current, is

i 1
= = -(sinac-siny) . (3.6.3)1CO 2

Solving these equations for the net current as a function of the total gauge-invariant phase

difference across the 2x2 cell parallel to the current, p = cx -y, we find

i - sin (p sin(q, / 2) (3.6.4)
ico (6+2cosq)) [I+sec2((p/2)]" 2

The maximum current per junction that can be carried in this state is ico(f=1/2) =

(4/2-1)i~(f=O), as can be found by differentiating this expression; this occurs for

= 2arcsin(2- 42)1/2 - 99.880. It is interesting to note that (3.5.4) describes a current-

phase relation 1((p) that is similar to the single-junction current-phase relation i = ico sin (p

except that now 9 denotes the total gauge invariant phase across the 2x2 vortex superlattice

unit cell, and the maximum supercurrent is only -(q2- 1)ico per junction, or twice that
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Fig. 3.6 Comparison of current-phase relation for a single junction, for a
2x2 superlattice cell for f = 1/2, and for a 3x3 cell for f = 1/3. The
maximum values (0.828 and 0.804) of the curves for f = 1/2 and 1/3
correspond to 0.414 and 0.268 per junction as explained in the text. The
gauge-invariant phase difference ( occurs across a single junction for f = 0,
but is distributed over two or three junctions in series in the 2x2 or 3x3
cells, respectively. Only half of a complete cycle is shown, to allow
detailed features to be more clearly seen.
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(i.e., Ieo(f=1/2) = 2i,,(f=1/2) = 0.82843 io) per 2x2 cell. This current-phase relation for

the 2x2 cell is compared with that for a single junction in Fig. 3.6.

The gauge-invariant phases and hence the currents for each of the junctions can be

worked out from this solution, with the following results: 11

sin a = [1 + sec2((p/2)] - 1/'2 [1 + sin ((p/2)] (3.6.5a)

sin 3 = [1 + sec2 ((p/2)] - 1/2  (3.6.5b)

sin Y = [I + sec 2((p/2) -if 2 [1 - sin ((P/2)] (3.6.5c)

The sign ambiguity of the square root is resolved by imposing a requirement of continuity.

the supercurrents for each of these junctions are plotted in Fig. 3.7 as a function of the total

gauge invariant phase, (p.

We have carried out similar (but more intricate) calculations for the f = 1/3 ground

state. Here one must determine five independent gauge-invariant phase differences within

the 3x3 cell, compared to three in the 2x2 cell for f = 1/2. Although we were not able to

find an analytic expression for the maximum supercurrent per junction, it was found

numerically to be ic(f=l/3)= (0.26789)i.(f=0). Referred to the 3x3 superlattice cell, the

maximum supercurrent is three times this (i.e., Ico(f=l/3) = 3ico(f=l/3) = 0.80367i.), and

occurs at a gauge-invariant phase difference of about 105.230. The current-phase relation

for the f = 1/3 (3x3) superlattice unit cell was calculated numerically and is also plotted in

Fig. 3.6.

Comparing the three exact current-phase solutions plotted in Fig. 3.6, for f = 0, 1/2,

and 1/3, we note that the maximum supercurrent per superlattice cell drops only from 1 to

0.828 to 0.804, and that this maximum occurs at a gauge-invariant phase difference per

'1The fact that a, 13, and y depend only on (p/2, implies that their periodicity in (p is over
41r, while (3.5.4) shows that the average net current per junction is periodic over 27r. This
difference reflects an internal period doubling in the case of ac drive as found in the
"fractional giant Shapiro steps" at f = 1/2 discussed in Chapters 4 and 5.
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Fig. 3.7. Supercurrents for single junctions vs. total gauge-invariant phase
across 2x2 superlattice unit cell from (3.5.5a-c): (a) sin(a). (b) -sin(y), and
(c) sin(p). Note that the currents are periodic in 4n a., pposed to the
average net curren: plotted in Fig. 3.6 which is periodic in 21r, and that
sin(a) and -sin(y), the currents in adjacent junctions parallel, to the dc bias
current are identical but out of phase by 2n.
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superlattice cell that increases only from 900 to 1000 to 1050. Thus, the effect of the

superlattice on the macroscopic response of the array is a sort of renormalization, in which

each qxq superlattice cell can be approximately replaced by a lx1 cell in an array with q-

fold larger lattice interval, but rather similar Ico(f) = qio(f) and an approximately sinusoidal

current-phase relationship.

These exact current-phase relations can also be used to calculate the zero-temperature

helicity modulus, Y, discussed in Section 1.3. The helicity modulus is the change in the

free energy of the array in response to a phase twist, y, applied across the array, in the limit

that the twist goes to zero, i.e. Y = lir a 2F / O y2 . The current phase relation is related to

the energy by I(y) = aF/dy (Tinkham, 1975, p. 211), so that Y = lim DI(y) / Y. The total

gauge invariant phase, (p, across the superlattice unit cell is essentially a phase twist, to that

the slope of the I-(p relations in Fig. 3.6 where (p = 0 should give the T = 0 helicity

modulus for the commensurate fields f = 1/2 and 1/3. From the exact calculations, we find

Y(f=1/2) = 0.7071 Ej(0) and Y(f=1/3) = 0.6315 Ej(0). These results are in excellent

agreement with the values found using Monte Carlo simulations and shown in Fig. 1.2,

where Y(f=1/2) = (0.707±0.001) Ej(0) and Y(f=1/3) = (0.633±0.003) Ej(0).

3.6 Conclusion

Systematic measurements of the dynamic resistance of a 2D square array of

Josephson junctions have shown it to be a complicated function of both bias current and

perpendicular magnetic field. We have consistently explained the major features of this

dynamic resistance within a model of the motion of 'strongly commensurate' vortex

superlattices in the 2D 'egg-carton' pinning potential of the junction array. This model

enabled us to make experimental estimates of the intrinsic critical current of the array in

commensurate magnetic fields, which we find to be in quite good agreement with exact
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theoretical values. The results of the exact calculations for f = 1/2 and 1/3 superlattice

states suggest the conceptual usefulness of a renormalized array picture. This work

complements previous investigations of the resistive dissipation in Josephson junction

arrays in zero field near the Kosterlitz-Thouless transition temperature and near the phase

transition temperatures for the commensurate magnetic fields. Taken as a whole, these

investigations present a fairly complete and unified picture of the dc properties of 2D

Josephson junction arrays over a wide range of temperature, current, and magnetic field.

The next two chapters (4 and 5) will discuss the ac properties of the arrays in

commensurate magnetic fields when driven with rf as well as dc bias currents.
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CHAPTER 4

AC PROPERTIES: EXPERIMENT

4.1 Introduction

We have performed experimental measurements1 of the response of large two-

dimensional (2D) arrays of superconducting-normal-superconducting (SNS) junctions to

radio-frequency (rf) currents, irfsin( 21ivt), and have found interesting and novel

phenomena. When an rf current is applied to a single Josephson junction, Shapiro steps

occur i. the dc i-v characteristics at voltages vn = nhv/2e, where n is an integer (Shapiro,

1963). We have observed giant Shapiro steps 2 in large square arrays in zero field

occurring at voltages

V11 = n e), n=0, 1, 2,..., (4.1.1)

where N = 1000 is the number of junctions in the direction of applied current. This

indicates that substantially all of the junctions are on the n'th step at the same time and that

the junction phases are locking to the if current.

In the presence of a uniform perpendicular magnetic field, these giant Shapiro steps

are drastically altered when the vortex superlattice created by the field is commensurate with

the underlying junction lattice (see Section 1.4). The most prominent commensurate states

1Most of the results presented in this chapter have been published in Benz et al., 1990a.

2This zero-field effect has been observed previously in hexagonal arrays above the resistive
transition by Leeman et al. (1984), and earlier in small 5x5 arrays of Nb spheres by Clark
(1973).
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in a square array occur when the applied magnetic field is such that the number of flux

quanta per unit cell, f = p/q (where p and q are integers), is f = 0, 1/4, 1/3, 1/2, 2/3, 3/4

and 1 (as shown in Chapter 1). When the vortex superlattice is in one of these 'strongly

commensurate' states and an rf current is applied, we observe fractional giant Shapiro steps

at voltages

Vn=N -J h n=0, 1, 2 ..... (4.1.2)

These fractional giant Shapiro steps depend on the superlattice unit cell size, q, and can be

understood by considering the motion of the vortex superlattices in response to the applied

rf currents. In this chapter we will describe the behavior of the giant Shapiro steps

described by (4.1.1) and show that the novel fractional giant steps of (4.1.2) are the result

of collective vortex motion across the 2D array locking to the rf drive current.3

The fabrication of our Nb-Cu-Nb junction arrays and measurement apparatus is

described in detail in Chapter 2, but will be briefly summarized here. The arrays are made

with 0.2.tm thick niobium islands on 0.3g.Lm thick copper films deposited on a sapphire

substrate. The cross-shaped niobium islands are formed by reactive ion etching and have a

2.m separation defining the junction length and a lattice constant of 1Ogm. Two single

junctions with the same geometry as the junctions in the array are made concurrently on the

same substrate. Both the single junctions and the square arrays have the same normal state

resistance (-2m92), determined primarily by the copper. Using a four-point measurement

circuit with a lock-in amplifier, the dynamic resistance, dV/dI, of the array was measured

versus dc voltage for different external magnetic fields, rf frequencies, rf amplitudes, and

3Interesting related quantum interference effects due to vortex motion have been observed
in type-H films by Fiory (1971), and in periodic 1-dimensional thickness-modulated films
by Martinoli et al., (1975). In the latter, the Abrikosov vortex lattice at certain magnetic
fields couples to the spacing of the grooves, leading to an expression for the dc electric
field that is proportional to the spacing and the magnetic field.
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temperatures. The data on arrays presented in this chapter were taken at temperatures well

below the Kosterlitz-Thouless transition to minimize the effects of thermally excited

vortices near this phase transition, as discussed in Chapter 1. The dynamic resistance,

dV/dI, was measured as a function of either current or voltage to more clearly expose the

thermally rounded step structure of the I-V curves. The measurement circuit used is that

shown in Fig. 2.4b of Chapter 2. The rf power coupled into the sample is limited by its

low impedance (-2mQ) and by high frequency noise filtering from the twisted-pair

measurement leads. The critical current of the array at a given temperature, I(T), is taken

as the current where the dynamic resistance is a maximum from the measured dV/dI vs. I

curve as discussed in Chapter 3.

In this chapter we will describe the experimentally observed dynamical properties of

2D arrays when driven with rf currents. We will begin (in Section 4.2) by discussing the

rf properties of the individual SNS Josephson junctions that form the building blocks of the

array, followed in Section 4.3 by a description of the results of our measurements on

arrays. In Section 4.4 we will describe the vortex motion model that we believe explains

these novel results, and in Section 4.5 we will discuss some of the more interesting details

of the measurements as well as the implications of our vortex motion model.

4.2 Single Junction Properties

The rf properties of arrays are greatly influenced by the behavior of the single

junctions in the array. When rf currents are applied to single junctions, steps appear in the

dc i-v curves when the Josephson frequency, determined by vj = 2ev/h, locks to the

applied rf frequency, v. This will occur when vj is equal to v and also when it is a

harmonic of the drive frequency, vj = nv, giving rise to steps when the average (dc)

voltage across the junction equals nhv/2e. Three experimental i-v curves for one of our

single
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Fig. 4.1. Experimental single junction voltage vs. current with v = 27MHz
=rv (!Q = 1) at T = 1.35K for three different rf voltage (source) amplitudes:
(a) Vrf = 0, (b) Vrf = 0.6mV, and (c) Vif = 1.OmV. Curves (b) and (c) are
displaced along the current axis by 30A and 60A respectively. Shapiro
steps are seen at voltage intervals of 55.9nV.
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junctions when driven with rf currents are shown in Fig. 4.1. Constant voltage steps are

clearly seen at the appropriate intervals of 55.9nV for this 27MHz frequency.

The details of the junction's response are highly dependent on the characteristics of

the junctions, and also on the rf power level and rf frequency that are applied. The

characteristic frequency of the single overdamped junctions in our arrays, as discussed in

Chapter 1, is vc = rn/21cL j = 2eic(T)rn/h, where rn is its normal state resistance, Lj is the

Josephson inductance, and ic(T) is its temperature-dependent, intrinsic critical current

(without fluctuations), as discussed in Chapter 3. By considering the RSJ model circuit

with zero capacitance discussed in Section 1.2 (Fig. 1.1 a), we can see that when v > v,

the non-linear Josephson element has a much higher impedance than the linear resistive

element, i.e. 2wv Lj > rn, so that most of the rf current flows through the resistor,

effectively ac voltage biasing the Josephson element. Thus, vc marks the crossover

between the effectively ac voltage-biased (v > vc) and ac current-biased (v < vc) regimes,

and will be used to define the reduced drive frequency, 0 = v/va.

The response of the overdamped junction is very different in these two frequency

regimes. The RSJ model can be used to calculate the i-v curves of the junction in the

presence of rf current for these two cases. When rf currents are included in the RSJ model,

the current equation (1.2.1) becomes

v + icsin(O) = idc + i rfsin( 21cvt). (4.2.1)
r.

The voltage across the junctions, including both the time-averaged dc voltage and the time-

dependent voltage, can be determined numerically from this equation and the Josephson

voltage relation (1.2.2), v = (h/2e)dO/dt, as will be shown in Chapter 5 for arrays. The

dynamics of the junctions, described by these equations, have also been investigated using

an analog simulator by Russer (1972). For v >> v, the effectively ac voltage-biased
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Fig. 4.2. (a) Experimental single junction step widths vs. rf voltage
(source) amplitude, for v = 27MHz = v, (Q = 1) at T = 1.35K. Vrf is the
voltage amplitude from the rf source. (b) Theoretical Bessel function
solutions vs. normalized rf amplitude for the n = 0, 1 and 2 steps, assuming
v >> v (Q >> 1), where 4f is the rf current amplitude through the resistor,
R, effectively ac voltage-biasing the junction.
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regime, (4.2. 1) can be solved analytically to find an expression for the widths of the

constant-voltage Shapiro steps. In this regime the step widths are found to be identical to

the ac voltage-biased step widths. It can be shown (see Van Duzer and Turner, 1981,

p. 181) that the width of the steps, I, as a function of rf amplitude are found to behave

like Bessel functions:

i= 2C~(e~ (4.2.2)

where Jn is the Bessel function and Vf is the amplitude of the voltage source. For the

effectively ac voltage biased solution, Vrf can be replaced by Irfrn . When v < vc , the step

widths as a function of if amplitude behave like distorted Bessel functions, as was shown

through analog simulations by Russer (1972) and calculations by Taur et al. (1974).

We have found the rf frequency and amplitude dependence of our experimental step

widths to be in excellent agreement with the distorted Bessel function behavior determined

from the current-biased RSJ model. As an example, in Fig. 4.2(a) we have plotted the

widths of the n = 0, 1, and 2 steps as a function of rf source amplitude for Q = 1 as

determined from the measured i-v curves of our single junctions (including those shown in

Fig. 4.1). These data are in excellent agreement with Russer's simulations for the same

frequency. For this frequency, v = v, the behavior of the steps is very close to the exact

Bessel function solution for the voltage-biased case, so for rough comparison, we have

plotted (4.2.2) for the same steps in Fig. 4.2b. This comparison was experimentally

useful because it gave us an estimate of the amount of rf current, If, that was actually

delivered to our samples through the measurement leads.

Since our single junctions follow the predicted theoretical behavior so well, we have

great confidence that the junctions in the array are also behaving as ideal Josephson

junctions. For instance, the junctions displayed no subharmonic steps, i.e. Vn =

(n/m) hv/2e having m > 2, which can be observed in underdamped junctions for various
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frequencies and in overdamped point contacts or microbridges, where the current-phase

(I-0) relation may not be purely sinusoidal. This agrees with theory, since it has been

proven (Renne and Polder, 1974) that the driven RSJ equation (4.2.1) without capacitance

and with a purely sinusoidal I-0 relation, can not produce subharmonic steps.

4.3 Experimental Array Results

4.3.1 Giant Shapiro Steps

In this section we continue with a description of some of the experimental results on

arrays when driven with rf currents. We consider first the effect of if currents on the 2D

array in zero magnetic field (f = 0). Fig. 4.3a shows a typical dV/dI vs. V curve for f = 0

at T = 3.0K, a temperature below the KT transition (TKT- 3 .5K for this sample). The

voltage axis has been normalized to Nhv/2e, so that 2eV/Nhv = n when the array is on the

n'th giant step. The measured I-V is included as an inset (Fig. 4.3b). These data are

representative, and clearly show minima in the dynamic resistance corresponding to giant

steps at voltages in agreement with (4.1.1). This behavior indicates that the N = 1000

junctions in each row across the array are all on the same step and attempting to lock to the

rf current.

In zero field, the 2D array can be thought of as behaving like a collection of single

junctions, all simultaneously phase-locking to the drive frequency, and all having the same

average (dc) voltage. These voltages simply add across the array, so that for an M by N

array (see Section 3.3.1), the total array voltage is: V = Nv. The array bias currents,

likewise, must scale with the width, M, of the array, so that the total array current is M

times larger than the single junction currents, i.e. I = Mi. However, the characteristic

frequency that determines the dynamics of the array is simply the characteristic frequency

of the junctions, namely vC = 2eic(T)r,/h. Thus an array of junctions in zero field will have
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Fig. 4.3. (a) A typical dynamic resistance vs. normalized voltage curve in
zero field for a 1000 by 1000 array. The data were taken at T = 3.0K,
where Ic = 0.79mA, with v = 0.73MHz (Q = Nhv/2eIcR = 1.0), and
I-f~ I. (b) The inset shows the I-V curve measured with the same
parameters.
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the same I-V curve as a single junction, for the same frequency, but the voltage and current

axis will by scaled by N and M respectively. This is why we can measure steps in the

arrays at much lower frequencies (kHz or MHz) than can typically be measured in single

junctions (MHz or GHz).

When a magnetic field is applied to the array, however, the dynamics becomes

dominated by the collective effects of the array. When f is an integer, we find that the array

behaves as it did in zero field, showing giant Shapiro steps. This periodicity derives from

the commensurability of the magnetic field with the periodic array structure, because for all

integer f there are no field-induced vortices in the array. This periodicity is identical to the

periodicity found for the magnetoresistance, critical current, and transition temperature,

discussed in Section 1.4. This symmetry of the 2D array in a magnetic field is one of the

primary characteristics that distinguishes the ac dynamics of arrays from that of single

junctions or series arrays (as was also found for the dynamic resistance curves with dc

currents in Chapter 3) and also leads to the novel appearance of fractional giant steps for

commensurate fields discussed in the next section.

4.3.2 Fractional Giant Shapiro Steps

Fig. 4.4 shows the dynamic resistance vs. normalized voltage for strongly

commensurate fields when f = 0, 1/2, and 1/3 at T = 2.1 K, all for the same rf frequency

and amplitude. The voltage axis has been normalized to Nhv/2e, so that 2eV/Nhv = n/q

when the array is on the n'th fractional giant step. The minima in the dynamic resistance

correspond to fractional giant Shapiro steps at voltages in agreement with (4.1.2). For

example, when f = 1/3, steps are observed when 2eV/Nhv = 1/3, 2/3, 1, 4/3, etc. The step

widths become narrower for larger q. We have also observed fractional giant steps for f =

1/6, 1/5, 1/4, 2/5, 2/3, and 3/4, confirming the q-dependence of the fractional steps. The
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Fig. 4.4. Dynamic resistance vs. normalized voltage for different
commensurate magnetic fields, corresponding to f = 0, 1/2, and 1/3. The
data were taken at T = 2.1K, where IC = 7.9mA, and with the same
rf frequency, v = 0.73MHz (f = Nhv/2eIcR = 0.1), and amplitude,
If - 0.75I, for each curve.
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fractional steps found for f = 2/3 are at voltages identical to those for f = 1/3, thereby

establishing the symmetry about f = 1/2 of the fractional giant steps.

4.4 Vortex Motion Model

The voltages of these novel field-induced fractional giant steps can be explained by a

simple picture incorporating the motion of vortices arranged in superlattices with qxq unit

cells on a periodic 2D "egg-carton" pinning potential due to the junction array. Vortex

superlattices and the "egg-carton" potential are described in detail in Chapter 1, but will be

briefly summarized below. The motion of a single vortex in a periodic junction array is

analogous to the motion of a particle on a periodic 2D "egg-carton" pinning potential (Lobb

et al., 1983, and Rzchowski et al., 1990). The minima of the egg-carton potential are

located at the centers of the array unit cells. The potential has energy barriers at the

junctions so that the vortices prefer to be centered on a unit cell and not over a junction (see

Fig. 1.5). When a commensurate magnetic field is applied, the repulsive forces between

the vortices combined with the influence of this 2D potential, cause them to be arranged in

the ordered superlattices discussed above.

When a dc current is applied to the array, a Lorentz force is exerted on the vortices as

discussed in Chapter 3. This force, in effect, tilts the 2D potential4 so that for large enough

currents the vortices will slide down the potential. Note that the Lorentz force will move

vortices of opposite sign in the opposite direction, giving rise to the symmetry about f = 1/2

mentioned above, and that the dc current required to depin the vortex superlattice is

different for the various commensurate fields, giving rise to the different depinning

currents, 1 (f), discussed in Chapter 3. Thus, for strongly commensurate fields, the vortex

4This is analogous to the 'washboard' model for single junctions, where the current term is
included in the 'effective' potential (see Van Duzer and Turner, 1981, pp. 179-180).
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superlattice can be considered to move down a tilted 2D potential in response to applied dc

currents.

When an ff current is applied, the potential is effectively rocked at the ff frequency

so that, at sufficiently high values of ff and dc current, the entire superlattice can slide

down the potential, locking to the if frequency. The array I-V curves will have fractional

giant steps when this synchronized motion occurs because the junctions will collectively

phase slip as the vortices in the superlattice move across them at periods of the drive

frequency. We will first describe the model for the specific case of f = 1/3, and then

include a detailed description for arbitrary magnetic fields.

In the zero temperature ground state for f = 1/3 (q = 3), the vortices are distributed in

a 'staircase' superlattice (see Fig. 1.4b). At finite temperatures and in the presence of dc

and rf bias currents, we assume, for simplicity, that the vortices are still arranged in 3x3

superlattice unit cells.5 The currents exert a Lorentz force on the vortices, causing the

ground state configuration to deform so that the vortices move across the array

perpendicular to the direction of applied current. This superlattice motion is shown

schematically in Fig. 4.5. When the entire f = 1/3 vortex superlattice has moved one array

unit cell, indicated in Fig. 4.5 by the solid arrows, then a total phase slip of 2XN/3 will

have occurred across the array. When this happens exactly once every if period, then the

voltage is given by (4.1.2), with n = I and q = 3, giving the first fractional giant Shapiro

step. If the dc current is increased so that the vortex superlattice moves across two array

unit cells, a distance of 2a (indicated by the dashed arrows in Fig. 4.5), in an if period,

then a total phase slip of 41rN/3 occurs giving the n = 2 fractional giant step for q = 3.

Similarly, for n = 3, the f = 1/3 superlattice will move three array unit cells per if period so

5The actual positions of the vortices within the superlattice unit cell is unimportant. The
essential element for the model is that there exist a repeat distance, q, in the direction of
vortex motion. In the presence of large enough bias currents, when the vortices are
moving, the actual positions of the vortices in the unit cell may be different from the
ground state, but the model still gives the correct step voltages.
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Fig. 4.5. Array schematic showing vortex motion model for f = 1/3. The
position of the vortices is indicated by the filled circles. The applied
magnetic field direction is out of the page so that the circulating vortex
currents are counter-clockwise (as indicated). The dc and rf bias currents
are distributed uniformly from top to bottom as in indicated by the shaded
arrows labelled i'. The Lorentz force on the vortices due to these currents
will move them to the left. When the superlattice moves one array unit cell
(as shown for a vortex in the middle moving from (a) to (b) along the solid
arrow) in each rf cycle, the array will be on the n = 1, q = 3 fractional giant
step. When the superlattice moves two array unit cells (dashed arrows), as
indicated for one vortex moving from (a) to (c), in each rf period, then the
array will be on the n = 2, q = 3 fractional giant step.
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that the vortices are at the same position in the array after every rf period. This will give the

same voltage as the n = 1 giant step in zero field because all the junctions in the array are

phase slipping by 2t per rf period.

In general for f = p/q, the vortices lie in qxq superlattice cells, so that the ratio of the

number of array unit cells moved per rf period, n, relative to the vortex superlattice unit cell

size, q, determines the voltage at each step. When the entire superlattice moves one array

unit cell during one rf period, the total phase slip across the array will be 27tN/q, giving a

total voltage across the array of (N/q) hv/2e, corresponding to the first fractional step for

that particular commensurate field (given by (4.1.2) with n = 1). The n'th fractional step

occurs when the superlattice moves n array unit cells in a given rf period, giving a total

phase slip of 21cnN/q across the array. Thus, when the number of array unit cells moved is

not a multiple of the vortex superlattice cell size, then n/q is a fraction and the voltage

across the array will be a fractional giant step. It is the commensurability of the vortex

superlattice with the periodic pinning potential of the array of junctions that is essential for

producing the fractional giant steps. When n/q is an integer, the vortex superlattice returns

to a configuration which is identical to its starting configuration after each rf period. In this

latter case, the Josephson frequency v j = 2eV/Nh of each junction is a harmonic of the

drive frequency, that is vj/v = n/q is an integer, and all the junctions phase slip by 27tn/q

per rf period. These 'harmonic' giant steps occur at the same voltage as the giant steps in

zero field.

Our model for the fractional steps does not attempt to describe the detailed motion of

the vortices, but only to present a qualitative picture that would result in a total phase slip

across the array of 21tnN/q per rf drive period and thus give the experimentally discovered

voltages. Dynamical simulations on arrays of resistively shunted junctions are required to

determine the vortex motion in more detail and will be discussed in Chapter 5.
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4.5 Discussion

In this section we will discuss some of the experimental details of the fractional giant

steps. We will also attempt to explain certain experimentally observed features, such as the

roundedness of the steps, and 'subharmonic' steps in zero field. An experimentally

observed 'beating' effect of the dynamic resistance for large drive currents will also be

shown. We will begin with a detailed discussion of the frequency dependence of the ac

properties of arrays.

As discussed in Section 4.3.1, the frequency dependence of the giant Shapiro steps

for integer f is primarily determined by the characteristics of the single junctions in the

array. These junctions, with critical currents ic(T), are highly overdamped, having an

essentially infinite plasma resonance frequency, so that the relevant frequency is the

crossover frequency, vc = 2eic(T)rn/h, above which the normal state resistance of the

junction, rn , dominates the conduction, as discussed in Section 4.2. The rf frequency and

amplitude dependence of the experimental giant step widths of the array in zero field

qualitatively follow the behavior of the single junctions for the same reduced drive

frequency Q2 = v/v c , if we use the critical current of a single junction in the array,

ic(T) = Ic(T)/M, with the experimentally determined array critical current, I,(T), in the

definition of vc . Since ic is strongly temperature dependent (2.3.1), vc is also, so that we

can explore a wide range of frequencies. (Note the different values of Q for the different

Ic(T) in Figs. 4.3 and 4.4). Despite the rounding effects, we have observed giant steps in

our 2D arrays in the frequency range 9OkHz-50MHz, and up to 1GHz in a 1000 junction

series array. The observation of the giant steps in the 2D arrays (for v - vc - ic(T)) at low

temperatures when the characteristic frequency is large, appears to be limited only by the

larger drive currents necessary to achieve sizeable steps, due to the exponential temperature

dependence of ic(T) and If= Mif (see Section 2.3). The sample size (lcm x 1cm) is much

smaller than the shortest wavelength, X, of applied rf radiation (for 1GHz), so that the
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finite sample size does not limit the frequency range over which the junctions can be

coherently driven, and the array can be treated as a lumped element (Na, and Ma << .).

The dependence of the width of the commensurate field-i nduced fractional steps on

rf frequency and amplitude is still under investigation, but some interesting qualitative

features have been observed. The frequency dependence of the step widths, in general,

qualitatively follows the behavior for single overdamped junctions, in that they get smaller

as Q gets smaller. The field-dependent critical currents, I,(f), for the commensurate vortex

superlattices, also appear to influence the absolute step width for these states;

experimentally (see Chapter 3) we find that Ic(f=l/2) > Ic(f=1/3) and that the giant step

widths for f = 1/2 are greater than those for f = 1/3. We propose that the fractional step

widths may scale with Ic(f), and that the characteristic frequency describing the response of

the array in the presence of a commensurate field is scaled by Ic(f) instead of Ic(f=O). A

detailed study of the experimental step widths as a function of rf frequency and amplitude is

complicated by the roundedness of the steps and the fact that they are not absolutely flat.

The roundedness and lack of flatness of the fractional giant Shapiro steps indicates

that voltage locking of the single junctions is incomplete throughout the entire array. The

Shapiro steps in our single junctions do appear flat at the lowest attainable temperatures

(1.35K), indicating that the junctions are then truly phase-locked to the if current. The

giant steps of the array could not be quantitatively compared with those of the single

junctions, because the giant steps are more rounded and dV/dI does not always go

completely to zero at each step. The giant steps in the arrays become flatter at lower

temperatures, but the steps are not completely flat even at the lowest measurable

temperature (2.1K). (The single junctions cannot be measured at the same temperature and

characteristic frequency as the arrays because the single junction steps are completely

washed out by thermal fluctuations at 2.1K (see Section 1.3). The arrays cannot be

measured effectively below 2.1K, as discussed in Section 2.3, because the available 4f is

insufficient to induce observable steps as a result of the larger critical currents at lower
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Fig. 4.6. (a) Cross section of an array perpendicular to the applied current
direction. A current-induced magnetic field, indicated by the ellipsoidal
lines (and direction indicated by the arrows: counterclockwise for applied
current out of the page) penetrate the array, being strongest near the edges.
This field will induce vortices in the array, with opposite sign on the left
side from those on the right. These 'current-induced' vortices will be
forced towards the center of the array (point 'c') by the current, where they
will annihilate with vortices of the opposite sign. The dissipation from
these extra vortices may cause rounding in the I-V curves or of the fractional
steps. They also may be responsible for the 'subharmonic' steps in zero
field. (b) Dynamic resistance vs. normalized voltage in zero field (f = 0),
for T = 2.09K, v = 7MHz (fl - 1.0), Vrf = 500mV (if - I). Subharmonic
structure is apparent between the n = 0 and n = I giant steps.
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temperatures.) This experimental evidence suggests that the rounded giant steps in the 2D

array are primarily a result of thermally-induced vortices and thermally-activated phase slip.

This view is consistent with theory, since the ratio of the energy barrier to the temperature,

central to the Ambegaokar-Halperin (1969) theory for noise rounding due to thermally

activated phase slip, is -85 times larger for one of our junctions at 1.35K than at 2.1K.

Non-uniform current flow due to the sample size being larger than the perpendicular

penetration depth (see Section 2.3), or due to differences in single junction critical currents

throughout the array, may also contribute to rounding.

Even with the symmetric current injection leads (Fig. 2.6b) that were used for these

measurements, the large bias currents can still generate magnetic fields in the array. These

fields will, however, be antisymmetric about an imaginary center line drawn parallel to the

applied current through the array. The finite size of the array will cause these fields to be

strongest near the edges of the array, as shown in Fig. 4.6a, generating vortices of

opposite sign on opposite edges. These vortices, which are present in zero field, will be

driven by the current toward the center of the array, where they can annihilate with the

oppositely-signed vortices that are moving toward the center from the opposite side. These

,current-induced' vortices may also contribute to the rounding of the steps discussed

above, but we believe they are responsible for a more interesting effect: 'subharmonic'

steps observed in zero field. An example of these steps that shows a considerable amount

of structure is shown in Fig. 4.6b. The 'subharmonic' steps that we have observed are the

most prominent when Q2 > 1 and I _ Ic, and generally have a only single feature occuring

at 2eV/Nhv = 1/2, where n = 1, and m = 2 (see Section 4.2). Motion of current-induced

vortices can lead to a subharmonic giant step at n/m = 1/2 if the current generates a field

strong enough to nucleate a vortex in every other cell on the edges of the array during each

rf period. These vortices will move towards the center (moving one array unit cell in each

rf period) in an f = 1/2-like superlattice where they will annihilate with the oppositely

signed vortices arriving from the opposite edge. This current-induced vortex model, which
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Fig. 4.7. Dynamic resistance vs. voltage for a 1OO0xlOOO array, with
f = 1/2, showing a 'beating effect'. The data were taken at T = 2.09K,
where IC = 7.9mA, with v = 0.73MHz (Q - 0. 1), and amplitude,
Irf I 1.
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originated through discussions between S. P. Benz, J. C. Garland, C. J. Lobb, D. B.

Mast, R. S. Newrock, and M. Octavio (1990 APS March meeting), although speculative,

has some experimental support. In a recent experiment by Mast and Newrock (Lobb,

1990), the 'subharmonic' steps disappeared when currents were injected in the opposite di-

rection through a parallel normal-metal film placed directly above the array (thus eliminating

the perpendicular component of the field and the 'current-induced' vortices in the array).

Another interesting feature that we found experimentally was a 'beating effect' in the

dynamic resistance, shown in Fig. 4.7, where the minima and maxima in the dynamic

resistance at the steps have a complicated (almost Bessel function-like) dependence on the

dc voltage. This phenomena has been observed for a number of commensurate fields,

including f = 1/2 and f = 1/3, but only occurs for large rf drive amplitudes, Irf>_ Ic. The

minima and maxima in the dynamic resistance appear to oscillate over finite voltage

intervals. Possible causes for this phenomena may include a combination of the following:

non-uniformity in the junctions, finite array size and current-induced vortices, or a more

complicated superlattice motion for these large rf bias currents. This phenomena requires

further examination to determine its dependence on rf frequency and amplitude.

4.6 Conclusion

In this chapter we presented some interesting phase-locking properties that were

experimentally discovered in 2D arrays. In the presence of rf currents and commensurate

magnetic fields, novel steps appeared in the dc I-V characteristics which were named

'fractional giant Shapiro steps' because they occurred at fractions of the voltage found for

the array in zero field. We have explained these steps with a model of vortex motion,

where vortices move collectively across the array locking to the rf drive frequency. In the

next chapter we present the results of computer simulations that were used to further

explore the ac dynamical properties of junction arrays.
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CHAPTER 5

AC PROPERTIES: DYNAMICAL SIMULATIONS

5.1 Introduction

The experimental measurements presented in Chapter 4 have shown that when a

radio-frequency (rf) current, irfsin( 2 'vt), is applied to a square array of Josephson junc-

tions in the presence of a perpendicular magnetic field commensurate with the lattice

structure of the array, fractional giant Shapiro steps occur in the dc I-V characteristics at

voltages

(V = n=0, 1, 2,..., (5.1.1)

where <Vn> is the average voltage across the array, n is an integer, N is the number of

junctions in the array in the direction of the applied current, and q is determined by the

vortex superlattice unit cell size q x q. The vortex superlattice, in turn, is determined by the

number of flux quanta per array unit cell, f = p/q, where p and q are integers. Such a

rational value of f is essential for observing fractional giant Shapiro steps because only for

such fields are field-induced vortices arranged in ordered superlattices commensurate with

the array of junctions.

We proposed in Section 4.4 that these fractional steps arise from the motion of a

field-induced vortex superlattice as it moves across the array in response to the rf and dc

currents. In this model, locking of the rf frequency and the frequency of the superlattice

motion results in Shapiro-like steps in the I-V curves. Since the detailed motion of the
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vortices in response to the rf current is difficult to determine experimentally, we have

performed simulations1 on 2D arrays of overdamped resistively shunted junctions (RSJ) to

gain insight into the physical origin of the fractional giant steps. The simulations show

fractional giant steps in agreement with (5.1.1), and confirm the phenomenological model

proposed in Section 4.4 to explain the steps. We will describe these results and then

present further results of simulations, at frequencies lower than the characteristic frequency

of the junctions, v, = 2eicr/h, that show unexpected dynamical behavior.

5.2 Simulation Algorithm

Our numerical simulations were performed, as were previous simulations (Xia and

Leath, 1989 and Chung et al., 1989), by solving the coupled, nonlinear, first-order

differential equations found from current conservation at each node of the array. In the

RSJ model, discussed in Chapter 1, it was shown that the current, iij, through an

individual junction is given by

iii = ic sin yij + vij, (5.2.1)
rn

where rn is the junction resistance, the voltage drop across the junction is given by the

Josephson relation,

A d 'ij (5.2.2)
2e dt

and the total gauge invariant phase difference across the junction is given by

IMost of the results presented in this chapter have been published in Free et al., 1990 and
in Benz et al., 1990c.
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i 2 f , "  " (5.2.3)Yi0 = Oj - ""

where (D0 is the flux quantum, Oi is the phase on node i, and A is the vector potential.

The magnetic field, H = Hi, enters through the vector potential. We use the Landau gauge

A. = Hx, so that the integral term vanishes for junctions along the i -direction and equals

(2 EHI/D 0 )x(yj-yi) = ±2if (x/a) along the ,-direction, where yi and yj are coordinates of the

i'th and j'th nodes. Current conservation at each node requires,

• = iiext (5.2.4)

In general i iext = 0, except at the boundaries, where i iext = ±[idC + if sin(21tvt)] is the

current injected (+) or extracted (-), as in the experimental configuration. Periodic

boundary conditions were chosen in the direction perpendicular to the current. The applied

dc and rf currents were uniformly injected into each column of the array. This is shown in

the schematic circuit diagram for a simulated 4x5 junction array in Fig. 5.1.

The coupled first-order differential equations resulting from (5.2.1)-(5.2.4) were

solved using a fourth-order Runge-Kutta method with uniform time steps. Starting with

initial phases at each node, the equations were integrated forward one time step to generate

new phases, which were then used to integrate forward another time step, etc. The times

steps were generally chosen to be one-fiftieth of the characteristic period, 1/vI. I-V curves

were calculated by ramping the current from zero, where the phases were placed initially in

the zero-temperature ground state configuration (see Figs. 1.3a and 1.3b), in order to avoid

boundary-related metastable states due to finite array size. The phases were allowed to

relax over 200 rf periods before time-averaging the voltage to obtain the average voltage

<V>. The longest periods in the simulations occur near the edges of the steps, but

generally 200 rf periods were sufficient for achieving a good average. The time steps were
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Fig. 5.1. Schematic circuit diagram for a simulated 4x5 junction array with
periodic boundaries in the direction perpendicular to the applied current.
The bias current, i = id + irfsinl(2 1cvt), is injected at the top and removed at
the bottom, and distributed uniformly to each of the junctions along the
edges, as shown by the solid arrows. The dangling junctions on the right
side are connected to the vertices on the left in order to complete the periodic
boundaries, as indicated for one of the junctions by the dashed curve with
arrows from 'a' to Wb. The voltage waveforms on the first f = 1/2
fractional giant step for the two junctions labelled I and 2 are displayed in
Fig. 5.3, and the junction currents on this step at three specific times are
shown in Fig. 5.4 for the two shaded unit cells in the center.
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chosen to be small fractions of the characteristic period (1/50vc) and the relaxation and

averaging times were taken as a large multiple of the rf period (200v), because 1/vc is the

smallest fixed period in the problem andl/v was generally the largest for the frequency

range studied, v 5 v.

The choice of boundary conditions for the simulations was not arbitrary.

Simulations had to be done on small arrays, since it was not computationally feasible (on

our Apollo computer) to simulate the 1000 by 1000 arrays used in our experiments.

Periodic boundary conditions (see Fig. 5.1) were chosen in the direction perpendicular to

the current, rather than free boundaries, because free boundaries cause non-uniform vortex

motion in small samples. The number of junctions in the periodic direction must be a

multiple of q in order to accommodate a qxq vortex superlattice, and to match the symmetry

with the lattice.

A more critical boundary problem that influenced the dynamics of the simulated

arrays was the method of current injection. We originally used bus bars in our simulations

by tying the junctions on both ends to single nodes (each with a single phase), and injecting

and extracting the current from these nodes. However, bus bars were found to strongly

affect the simulated I-V curves because of the nonphysical phase constraints they introduce,

leading, for example, to unreasonably small critical currents. Fractional giant steps were

also observed in the simulations with bus bars and either periodic boundary conditions or

free boundary conditions, but we found that uniform current injection and periodic

boundary conditions in small arrays more closely simulated the behavior of our large

experimental arrays. We note that the dynamical behavior on the steps was not

significantly affected by boundary conditions, even though the values of the dc currents at

which steps occur, i.e. the step widths, were affected.

With periodic boundary conditions perpendicular to the current and uniform current

injection imposed at the ends of the array, the critical current per junction for the f = 1/2

state was found to be i¢(f=l/2) = 0.35i,(f--0). This is in agreement with the critical current
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found by Mon and Teitel (1989) for the same boundary conditions. It should be noted that

this critical current is substantially lower than that calculated (for infinite arrays) by other

methods, as discussed in Chapter 3 where it was found that i,(f=1/2) = 0.414i(f--0). This

difference is due to the boundary conditions: uniform current injection gives a pattern of

currents that strongly deviates from the periodic ground state near the current injection (or

extraction) nodes. As an alternative to uniform current inje -tion, we used currents at the

boundaries which were determined from the exact calculations for the periodic f = 1/2 state,

i.e. the supercurrent equations (3.6.5a)-(3.6.5c) for the ac and y junctions from the exact

calculation in Section 3.6. With periodic boundaries perpendicular to the current and this

current injection method, the array behaved as though it were part of an infinite array; the

supercurrents in the array were not distorted near the current injection nodes, and the

correct ground state critical current (42-1) was reproduced.

The experimental arrays discussed in Chapter 3 were very large, 1000 by 1000

junctions, had free boundaries on the edges parallel to the current and used

superconducting bus bars to inject the current (Fig. 2.4a). The arrays discussed in Chapter

4 used normal metal electrodes configured to inject the current approximately uniformly

(Fig. 2.4b) were found to display essentially the same dynamic resistance behavior as the

arrays with bus bars. We conclude that the experimental arrays are so large that their

measured properties are essentially independent of their boundary conditions including the

method of current injection, since the few affected rows of junctions at the edge of the array

contribute a voltage that is less than one percent of that given by a feature involving the

bulk of the array. Accordingly, their measured properties resemble those of an infinite

array. On the other hand, since simulations are limited to much smaller arrays, the

boundary conditions are more important, as discussed above. We were unable to use the

exact solutions for currents greater than the critical current, so the uniform current injection

technique was used as the best approximation for the large experimental arrays, even
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though the critical current that is found experimentally for the f = 1/2 state agrees more

closely with 0.414i(f--0), than the uniform current injection result of 0.35i,(f=O). 2

5.3 Voltage vs. Current Curves and Results

Figure 5.2 shows representative dc current-voltage (i-V) curvs computed for

various commensurate magnetic fields f with an applied rf current. The first curve shows

results for f = 0 and i1f = ie(f=0), at a normalized frequency Q = v/va = 1, where vc =

2eirn/h is the characteristic frequency. id, is the applied dc current per junction parallel to

the current flow, and <V> is the time-averaged voltage across the array. The constant-

voltage giant Shapiro steps occur at the voltages given by (5.1.1) with q = 1. This curve is

the same as the response of a single junction to combined dc and rf currents because each

junction responds in the same way to the external dc and rf currents, as was suggested in

Chapter 4 for the zero magnetic field case.

The second curve in Fig. 5.2 shows an I-V curve for f = 1/2, with the same rf

current amplitude and frequency as the f = 0 curve. Fractional giant Shapiro steps now

appear at voltages given by (5.1.1), with q = 2. The third curve shows an I-V curve for

f = 1/3. The voltages of the fractional giant Shapiro steps are also given by (5.1.1), with

q = 3 in this case. All of these simulations produce results which are in qualitative

agreement with the experiments discussed in Chapter 4.

2We have recently become aware of a new simulation technique (Eikmans and van
Himbergen, 1990) that may allow periodic boundaries in both directions in the presence of
arbitrary dc and rf bias currents This would provide the best method for eliminating finite-
size and boundary effects in the small simulated arrays.
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Fig. 5.2. Normalized time-averaged voltage vs. normalized dc current per
junction for simulated MxN arrays with K2 = 1, irf = i, and different
magnetic fields: f = 0, 4x5 junctions; f = 1/2, 4x5 junctions; f = 1/3, 3x6
junctions. Curves f =1/2 and f = 0 are shifted from the origin along the
current axis by successive 0.25 increments. Fractional giant steps are
apparent in these I-V curves and are at voltages in agreement with
experimental results.
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5.4 Comparison with the Vortex Motion Model

To gain further insight into the rf response of arrays, and to make a detailed

comparison with the theoretical model discussed in Section 4.4, we have looked at the

instantaneous voltage and phase difference across individual junctions in the array as a

function of time. A 4x5 junction array (shown in Fig. 5.1) was chosen for f = 1/2 so that

one row of junctions would be symmetrically located between the current injection and

removal edges of the array. Fig. 5.3 shows the voltages across two adjacent junctions

(labelled 1 and 2 in Fig. 5.1) in this row oriented along the current direction on the lowest

(n = 1) fractional step of the f = 1/2 curve shown in Fig. 5.2. Two main features are worth

noting. First, the two junctions have the same voltage waveform, but are out of phase by

exactly one rf period. Second, the period of the voltage on each junction on this lowest

step is twice the period of the external rf current, although the spatial average voltage

retains the period of the drive.

Figure 5.4 shows the phases and supercurrents in two adjacent unit cells in the

center of the 4x5 junction array (shaded unit cells in Fig. 5.1) at the times (a), (b), (c)

indicated in Fig. 5.3, i.e., before, during, and after the phase slips which dominate the

behavior of the array on the lowest-voltage step. [The dc current flows from top t o bottom

in this figure. The instantaneous voltage of the center junction (labeled 2 in Fig. 5.4) is

plotted by the solid line and the junction to the left (labeled 1) is plotted by a dashed line in

Fig. 5.3] Fig. 5.4a shows the junctions at a point in the drive period when the rf and dc

currents nearly cancel, and the phase and current corniguration resembles the zero-current

ground state. In Fig. 5.4b, the current in the center junction (labeled 2 in Fig. 5.3) has

increased toward the zero-field critical current, while the currents of opposite sense in the

adjacent junctions (labeled 1 and 3) have decreased nearly to zero. The phases continue to

evolve until the currents in the outer junctions (1 and 3) go to zero ard begin to increase in

magnitude in the opposite direction, after which the current in the center junction (2) goes
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Fig. 5.3. Normalized instantaneous voltage vs. normalized time across two
adjacent junctions parallel to the current (labeled 1 and 2 in Fig. 5.1) for a
4x5 array on the n = 1, q = 2 fractional giant step, with f = 1/2, Q = 1,
irf = i¢, and idc/ic = 0.65. Lines a, b, and c mark the times associated with
the supercurrent snapshots shown in Fig. 5.4. Time is normalized to the
single junction characteristic frequency, vc. Note that the waveforms are
identical, have a period double that of the rf period, and are out of phase by
exactly one rf period.
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Fig. 5.4. Supercurrents (shaded arrows) and phases (narrow dark arrows)
for two unit cells in the center of a 4x5 junction array (the shaded cells in
Fig. 5.1) under the same conditions as in Fig. 5.3. a) tvc = 100.7, b) tvC =
101.15, and c) tvC = 101.7. Times a) and c) are exactly one rf period apart
(since v = vc) and show the currents in the left unit cell at time (c) to be
identical to the currents in the right unit cell exactly one rf period earlier at
time (a). The filled circle with an arrow represents a vortex, centered on the
right unit cell at time (a), moving across the energy barrier at junction 2 at
time (b), and then sitting at the identical position in the left unit cell exactly
one if period later at time (c).
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through zero and changes direction. Finally, the currents in the transverse junctions also

reverse, so that unit cells which started with clockwise (counterclockwise) currents in Fig.

5.4a end up with counterclockwise (clockwise) currents in Fig. 5.4c. In effect, the f = 1/2

vortex superlattice has moved one unit cell, as indicated by the placement of the filled circle

having moved from the right cell in Fig. 5.4a into the left cell in Fig. 5.4c. The phase

difference across each junction in the direction of the current has advanced by an average

amount of 7r, which leads, via the Josephson voltage-frequency relation, to (5.1.1) for the

voltage drop across the whole array, with n = 1 and q = 2. More generally, when each

junction has an average phase slip of nnr per rf period, the n'th step occurs. These results

give detailed confirmation to the model proposed in Section 4.4.

Analogous behavior occurs for f = 1/3, as shown in Fig. 5.5a for two adjacent

junctions when v _> vc. The period of the instantaneous voltage across a single junction as

a function of time on the lowest step for f = 1/3 is tripled with respect to the rf drive,

instead of doubled as for f = 1/2. The voltage waveforms across adjacent junctions are the

same, but again are out of phase by one if drive period. This shows that the vortex

superlattice for f = 1/3 effectively moves one junction lattice unit cell per if period when

current biased on the n = 1, q = 3 fractional giant step, in support of our model.

5.5 Low Frequency Results

We have also investigated the response of the arrays to lower rf drive frequencies,

specifically v = 0.1v. Since the characteristic response frequency of the junctions, vC, is

10 times faster than the drive frequency in this regime, the vortices can respond more

quickly to the if current, slipping into adjacent cells in a time -1/v, = 0.1/v. This is shown

in Fig. 5.5b, where we have plotted the instantaneous voltage across two adjacent junctions

parallel to the external current (the same junctions 1- and 2 shown in Fig. 5.1) for a current

at the center of the lowest (n = 1) fractional giant step for f = 1/2. The junctions in the
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Fig. 5.5. Normalized instantaneous voltage vs. normalized time across two
adjacent junctions parallel to the transport current: (a) for a 3x6 junction
array on the n = 1, q = 3 fractional giant step, with f = 1/3, v = vr, irf i,
and i-d = 0.47i c, and (b) for a 4x5 junction array on the n - 1, q - 2
fractional giant step, with f = 1/2, v = 0.1v, irf = 0.2ic, and idc = 0.25ic.
Time is normalized to the characteristic period, l/vc.
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array still collectively lock to the same voltage so that the steps are given by (5.1.1). For a

large portion of the rf period, -0.9/v, the vortex superlattice is essentially at rest and then

each vortex slips quickly into its adjacent cell in a time -1/v,. This is shown by the

relatively long flat voltage followed by the narrow spike when the vortex superlattice slips.

The two junctions have the same voltage waveform, which is period doubled with respect

to the if drive, but are out of phase by exactly one if period. Thus we see the same

behavior, i.e. period doubling and adjacent junctions being out of phase by one rf period,

as we did in Fig. 5.3 for the same junctions at a higher frequency (v - vc), except that the

voltage waveforms are much different at this lower frequency because the response of the

junctions is much faster than the drive frequency.

For these low frequencies v < v, the response of the vortices will be faster than the

rf drive so that the vortex superlattice may deform for short intervals within rf periods. It is

not unlikely that vortex lattice shear or some other more complicated deformation of the

vortex superlattices could occur. If a row of vortices can shear past its adjacent rows at

these low frequencies, the voltage across the array will be determined by the number of

moving vortices and distance they move in a given rf period. If this motion locks to the rf

drive frequency, 'subharmonic' fractional giant steps would occur at voltages

= n J(N) .. n = 0, 1, 2,..., and m = 1,2,..., (5.5.1)

for any value of q. We have observed some experimental indications of a possible

'subharmonic' step for f = 1/3 but the step widths are small at these frequencies and much

too rounded by thermal noise for explicit confirmation.

Our simulations for f = 1/3 at these low frequencies, namely v = 0. lvC, do show

new steps. In Fig. 5.6 we see not only the fractional giant Shapiro steps, but subharmonic

fractional giant steps at one-half the fractional step voltage, so that m = 2 in (5.5.1). No

89



1.5 .

~1.0

0.5

0.0 -1

0.0 0.1 0.2 0.3
idclic

Fig. 5.6. Normalized time-averaged voltage vs. normalized dc current per
junction for a simulated 3x6 array with v = O.1v c, irf= 0.2ic, and magnetic
field f = 1/3. Subharmonic fractional giant steps appear halfway between the
fractional giant steps of the f = 1/3 I-V curve in Fig. 5.2.
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subharmonic steps were observed, though, for f = 1/2 at low frequencies. These steps are

similar to those reported by Lee et al. (1990), specifically for odd values of q, where they

suggested that sublattices of the original superlattice are moving and locking to the rf

period. 3 We emphasize that these subharmonic fractional steps, if they can be shown to

exist experimentally and are not an anomalous result of the simulations' boundary

conditions, are a result of vortex motion and thus are entirely different from the

subharmonics found in single underdamped junctions for frequencies near the plasma reso-

nant frequency. Further work is required to clarify whether this phenomenon is a result of

boundary conditions or an intrinsic property of the superlattice response.

The exact current-phase relations for the f = 1/2 and f = 1/3 superlattices discussed in

Section 3.6 also suggest the possibility of subharmonic steps for commensurate fields.

The renormalization picture mentioned in that section, replaces superlattice unit cells with

single junctions, which have only approximately sinusoidal current-phase relations. Using

this renormalization, the fractional giant step voltage relation (4.1.2) reduces to the giant

step relation (4.1.1), V, = nN'(hv/2e), because there are effectively N' = N/q renormalized

junctions across the array. Since the current-phase relations for these renormalized

junctions are not perfectly sinusoidal, subharmonic steps become possible as suggested for

single overdamped junctions by Renne and Polder (1974).

3Recently (at the 1990 APS March meeting), Lee et at. have retracted their 'subharmonic'
step results, claiming that they were a result of their free boundary conditions. However,
our 'subharmonic' fractional giant steps were observed using periodic boundary
conditions, but for much smaller-sized arrays than those simulated by Lee et al. At these
low frequencies for f = 1/3 the vortex superlattice is very distorted and there is not a
symmetric period-tripled voltage waveform analogous to the waveform for f = 1/2 at low
frequency in Fig. 5.5b.
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5.6 Conclusion

In conclusion, we have performed RSJ model simulations on arrays of overdamped

Josephson junctions and studied their dynamical response to applied rf currents in the

presence of a magnetic field. The results show fractional giant Shapiro steps at voltages in

agreement with the experimental observations discussed in Chapter 4. By following the

response of adjacent junctions in the array, we have shown that on fractional giant steps,

the vortex superlattice does indeed slip perpendicular to the applied current in synchrony

with the rf drive current as proposed in the vortex motion model. We have found

interesting and complex dynamical behavior in the simulations that have shown

subharmonic fractional giant steps for f = 1/3 at low frequencies.

92



CHAPTER 6

THE SUPERCONDUCTOR-NORMAL PHASE BOUNDARY IN

POSITIONALLY DISORDERED ARRAYS

6. 1 Introduction

Many superconductors are not homogeneous, but contain voids, normal regions, or

regions with weaker superconducting properties. Disorder plays an important role in these

materials because the positions or sizes of the normal or superconducting regions may vary

randomly. Granular superconductors, which consist of weakly Josephson-coupled grains,

are one example of disordered superconductors, and have been studied both in bulk and as

thin films. Disorder in these materials is evident in many forms, including randomness in

grain sizes, coupling strength between grains, and grain positions (Shih et al., 1984; and

Tinkham and Lobb, 1989). High-T, superconducting oxides are the most recent and

exciting examples of this class of disordered materials.

Superconducting arrays of weakly-coupled Josephson junctions have recently been

investigated both theoretically and experimentally as a system where positional disorder can

be introduced deliberately. Invoking a renormalization group analysis by Rubinstein,

Shraiman and Nelson (1983), Granato and Kosterlitz predicted (in 1986) both a disorder-

dependent critical field for the destruction of quasi-long-range order and a reentrant phase

transition when positional disorder was introduced. The results of experiments on

positionally disordered Josephson junction arrays have been previously reported by

Forrester et al. (1987 and 1988). By analysis of structure in the magnetoresistance

measured in such samples, it was possible to extract a critical field beyond which quasi-

long-range phase coherence was destroyed (Forrester et al., 1988). This field was in good

93



agreement with the prediction of Granato and Kosterlitz. However, the most prominent

experimental result, the decay of the principal resistance oscillations, has not been explicitly

dealt with in any existing theory. This chapter' will briefly review this unresolved result

and then describe mean-field simulations we have performed to interpret it.

6.2 Experimental Results

Experiments were performed on two-dimensional thin film arrays of proximity-effect

junctions, consisting of cross-shaped superconducting Pb islands, weakly coupled through

a normal metal underlayer (Forrester et al., 1987 and 1988). Positional disorder was

quantitatively introduced by displacing the centers of the islands by a small random

amount, 8r = (Sx, 8y), given by a truncated uniform probability distribution,

P(Sr) = Px(ax).Py(Sy):

1 * <
P,(8x)= 2 a (6.2.1)

0 otherwise

where a is the regular array lattice constant. When the islands were displaced, the edges

forming the junctions, i.e. the tips of the crosses, were constrained to remain on their

periodic lattice positions, as shown in Fig. 6. la, in order to preserve uniformity in the

junction critical currents.

The array resistance, R, was measured as a function of the average number of flux

quanta per unit cell, f,- In samples without deliberate disorder, R(fo) showed principal

oscillations periodic in integer fo, as well as fine structure at higher order rational values of

fo, i.e. strongly commensurate fields where f, = p/q (see Section 1.4), as seen previously

'Much of this chapter has been published in Benz er al., (1988).
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(b)

(c)

Fig. 6.1. (a) Typical unit cell in a proximity-coupled array. Distorted
crosses are superconducting islands. Solid line was added to emphasize
junction constraints. (b) Typical wire network unit cell emphasizing wire
constraints, analogous to (a). (c) Wire network unit cell without
constraints. The nodes in (a), (b) and (c) are displaced by the same amount.
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in both junction arrays (Tinkham et al., 1983; Webb et al., 1983; Kimhi et al., 1984: and

Brown and Garland, 1986) and wire networks (Pannetier et al., 1984). The principal

oscillations in samples with disorder were found to decay with increasing field at a rate

depending on the amount of disorder, as illustrated in Fig. 6.2. By measuring samples

with various values of A*, and correcting for single junction effects, 2 it was found that the

peak-to-peak amplitude of the principal oscillations decayed within an approximately linear

envelope, disappearing at a critical field, fc, given by (Forrester et al., 1987 and 1988)

fc .A= 0.95 . (6.2.2)

Granato and Kosterlitz (1986) predict the same proportionality between the disorder

and their critical field for integer fo, but their proportionality constant is an order of

magnitude lower. This is because the experimental critical field, as defined here, measures

destruction of correlations over a single unit cell, while the prediction by Granato and

Kosterlitz is for quasi-long-range order (see Forrester et al., 1988). Fluctuations greatly

influence quasi-long-range-order, but have less effect on short-range correlations. The

Ginzburg-Landau mean-field theory, without corrections for thermal fluctuations (Teitel

and Jayaprakash, 1985), might explain the decay of the principal oscillations.

6.3 The Ginzburg-Landau Equations and Simulation Algorithm

The Ginzburg-Landau equations have been used to calculate the phase boundaries of

many different wire networks, including ordered (Alexander, 1983; Pannetier et al., 1984;

Fink et al., 1982; Rammal et al., 1983; and Simonin et al., 1983), quasiperiodic (Nori et

2Single junction effects cause the gradually rising background in the data of Fig. 6.2, as
well as an additional modulation of the resistance oscillations (see Section 3.3.3, and
Forrester et al., 1987 and 1988).
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Fig. 6.2. Voltage (at I =lOgA) vs. magnetic field (in average number of
flux quanta per unit cell, fo) for experimental arrays with various amounts
of disorder, A* (from Forrester, et al., 1988, and Forrester, 1988).
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al., 1987 and Nori and Niu, 1988) and fractal networks (Rammal and Toulouse, 1982).

The measured change in resistance, 5R(fo), of wire networks and Josephson arrays is

roughly proportional to the change in the critical temperature, 5T,(fo). 3 Mean-field

calculated phase boundaries are in excellent agreement with experiments on wire networks

(Pannetier et al., 1984; Gordon et al., 1986; Behrooz et al., 1986; and Santhanam er al.,

1988). They have also compared well with resistance oscillations in quasiperiodic

Josephson arrays (Springer and Van Harlingen, 1987).

The Ginzburg-Landau mean-field theory does not determine the exact phase

transition temperature for our arrays, because it neglects vortex fluctuations close to Tc. It

is, however, a very good approximation (see Teitel and Jayaprakash, 1985), especially for

strongly coupled junctions, and will provide a useful comparison for the primary resistance

oscillations, which were measured above T. Therefore we use this mean-field calculation

for T¢(f o) to predict the qualitative behavior of the magnetoresistance in the experimental

Josephson junction arrays with positional disorder.

We assume the linearized Ginzburg-Landau equations,

2m (Do

ie t +{(. g2r-()' (T - 2 7rA('0, (6.3.1)
D0 ))

are valid on a network of one-dimensional wires. The supercurrent density, J, the vector

potential, A(1), and the gradient, V1 = ld/ dl are vectors along the path I of the wire.

3Experimentally in junction arrays, the resistance is measured with a small current at a fixed
temperature above the zero field critical temperature, T > T(O). In this case SR(fo,T)
ST,(f) • (dR/dT "T (Tinkhan et al., 1983).
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'(T) is the temperature dependent coherence length and ( 0 is the flux quantum. These

equations have a solution for the order parameter, V</), at a distance I along a single branch

from node m to node n of length L,,n,

V(1)= e'Y- Vnsin L I ,e- ' Y" sin (6.3.3)

where y,,. is the integral of the magnetic vector potential along the wire from node m to

node n,

Y,, =(l).dl . (6.3.4)
(DO m

V.= [ Pm[e '' is the value of the order parameter at node m. In our square network, each

node is connected to four nearest neighbors, 1 _< n < 4. Current conservation then gives

the following equation at each node m in the network,

4 Lm - I = 0, (6.3.5)
n=1) sin( Lmn)

S(T)J

For an ordered array, this equation is greatly simplified because the length L.,, = a is a

constant throughout the network. However, in a disordered array, the lengths between

nearest neighbors are random, and for an NxN array (6.3.5) becomes a set of N2 coupled,

complex equations.
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For a given fo, we solved this set of equations by adjusting the coherence length.

(T), to find the highest-temperature solution, which defines T'(fo). The coherence

length, in mean-field theory, is related to the critical temperature at fo by the following

relation:

a ) [T()Tc(f) a2 -[5Tc(fo)]-ac , (6.3.6)4[TC f01 )] T 0-T f) ) C (0 )

where a is the lattice constant, and a = a 2/4(0) 2T(O) is a positive constant. Equation

(6.3.6) is the calculated change in the critical temperature that we wish to compare with the

measured change in the resistance of the junction arrays, STe(fo) - 8R(fo). (Note that

8T,(f 0) is defined as the downward shift of the phase transition temperature from the zero

field value, since cc > 0.)

We solved (6.3.5) for NxN arrays, with N = 4, 8, 12, 16 and 24, all having

periodic boundary conditions in both directions. Without disorder we found the usual

phase boundary that is periodic in integer f. (note that f% = f for a regular array), with the

expected fine structure at the strongly commensurate fields, f. = 1/2, 1/3, 1/4, etc., for a

square array (see Fig. 6.3). When we introduced disorder, we considered three different

cases with various types of site displacements and unit cells. In the first case (G) we

displaced the nodes with a Gaussian probability distribution, of variance AG, and then

connected the nodes with straight wires to form four-sided unit cells, as shown in

Fig. 6. 1c. This is analogous to the situation considered by Granato and Kosterlitz (1986)

for junction arrays. For the second case (U), we used a uniform probability distribution

(6.2.1), truncated at half-width AU, to avoid the tails associated with the Gaussian

distribution, with the same unit cell shape as in (G). And for the third case (P), we

modeled the experimental disordered arrays more closely. Twelve-sided polygon-shaped

unit cells were created by constraining the center segment, of length equal to that of the
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Fig. 6.3. Decrease in critical temperature vs. magnetic field (in flux quanta
per unit cell, f) for a uniform array. See (6.3.6) for the relation between
STc(f).a and Tc(f). Data is combined from runs on 16x16 and 24x24
arrays. Notice that we only calculate T,(f) for values of field commensurate
with the particular size lattice, e.g. for an 8x8 network we calculate Tc for
f = m/8, where m is an integer. Thus larger arrays show higher order fine
structure.
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junction (= 0.15a), along each wire (Fig. 6.1b) and then displacing the nodes with a

uniform distribution (6.2.1), of half-width Ap. Cases (G) and (U) simulate different

disorder distributions on the same shaped unit cells (four-sided), while cases (U) and (P)

simulate the same disorder distribution (uniform) on different unit cell shapes.

6.4 Simulation Results and Discussion

Typical results for an 8x8 network for each of the three cases are shown in Fig. 6.4,

where A = AU = Aa = 0.1. Each graph represents an average over many disorder

realizations to reduce finite-size fluctuations in the individual realizations. Note that Tc(fo)

still oscillates periodically in integer f. as in the ordered arrays, but there is no fine

structure. Unlike the ordered case, these principal oscillations in Tc(fo) decrease within an

approximately linear envelope with increasing field, similar to the experimental resistance

oscillations (see Section 6.2). As in the experiments, we define a critical field, f., by

extrapolating the envelope of the oscillations to the field where its amplitude goes to zero.

Above f, the critical temperature fluctuates weakly about a constant value. Note that f, is

different in each case, although the respective A's are the same, showing that both disorder

distribution and unit cell shape are important for determining fc- Calculations for various

amounts of disorder show that this critical field is inversely proportional to the amount of

disorder. In the case (P) most analogous to our experimental junction arrays we find that

fc .Apu 1.0, (6.4.1)

which agrees very well with the experimental result (6.2.2).

Figure 6.5 shows data for 12x12 networks, where different amounts of disorder

were chosen for each case in order to get the same critical field. This occurred when the

amount of disorder was chosen so that each case had the same fractional root-mean-square
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Fig. 6.4. Decrease in critical temperature vs. magnetic field for Wx arrays
with disorder. (a) Case (G), with AG~ = 0. 1, averaged over 25 realizations.
(b) Case (U), with Au = 0. 1, averaged over 26 realizations. (c) Case (P),
with A = 0.1, averaged over 52 realizations. Dashed lines show
approximate envelope used to define f,

103



0.6

. Case (G)

0.4

0.2 Gaussian"" (a)

0.0 -_

0.4

0.2 Uniform0.2 ------ - - -(b

,,6" (b)

0.0

i-'" " ~ -. Case (P)

0.4

0.2

0.0 --- -(c)0.0
0 5 10 15

fo

Fig. 6.5. Decrease in critical temperature vs. magnetic field for 12x12
arrays with disorder, averaged 15 realizations each. (a) Case (G), with
Ac = 0.02404. (b) Case (U), with AU = 0.0408. (c) Case (P), with
Ap = 0.1. Dashed lines show approximate envelope used to define f,
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unit cell area fluctuations, CA, . . This quantity depends on both disorder distribution and

unit cell shape. The rms area fluctuations for the three cases can be shown to have the

following values

Orms= ='- - - P . (6.4.2)

3 4.16

The first two expressions were determined analytically and the last numerically.

Expressing (6.4.1) in terms of rms area fluctuations, or equivalently rms flux fluctuations,

our results for all three cases are consistent with

(Cl rms ) = fe'aArms - 0.34 . (6.4.3)
(Do c

Thus, the oscillations in Tc(fo) disappear when the rms flux fluctuations reach

approximately a third of a flux quantum, cD., in each unit cell. It is not obvious why this

value should be so close to 1/3, but it is reasonable that it is less than 1/2.

By comparing Figs. 6.4(c) and 6.5(c), which represent the same amount of disorder

but different size arrays, one can see that the critical field is indeed the same, thus

demonstrating the size independence of (6.4.1). However, some small amplitude

oscillations which persist even beyond f, are more obvious in Fig. 6.5. This is a result of

insufficient disorder averaging, as can be seen by comparing with the data in Fig. 6.4,

where more averaging has substantially reduced the fluctuations.
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6.5 Other Notable Features

Other interesting results have been found from these mean-field simulations that

require further investigation. For integer f0, positional disorder causes T,(fo) to decrease

with increasing fo. However, for some fractional fo, such as the fully-frustrated half-

integer fo case, the T,(f o) increases as f. approaches fc, leading to the conclusion that

positional disorder relieves the frustration of the array at higher fields for more frustrated

values of f.. For f. > r., the phases become random for all fo, resulting in a Tc that is

between the critical temperatures of the integer and half-integer fo cases without disorder.

This high-field T, depends on the size of the array, but remains independent of ft, even for

very large fo. Extrapolating to large arrays we find 8T,(fo).a = 0.27 for f. > f, This

numerical result has not yet been explained theoretically

Finally, arrays with very small positional disorder show interesting behavior for

fo << fe. In this low-field region, as shown in Fig. 6.6, fine structure is present at

strongly commensurate fields as found in ordered wire or junction arrays and in disordered

junction arrays (Forrester et al., 1988). Furthermore, the T,(fo) principal oscillations in

this region decay at a faster rate than those discussed above. This low-field decay rate

scales only with the rms site displacements, 4 as opposed to the rms unit cell area

fluctuations discussed above, because a uniform distribution with AU = 0.004 gives the

same decay rate as the Gaussian distribution with A, = 0.00231 and is independent of the

unit cell shape, i.e. cases (P) and (U) give the same low-field decay rate since they have the

same uniform probability distribution. However, the low-field decay rate is also array-size

dependent, since it was found that the rate increases with increasing sample size, so that the

'cross-over' field (f. - 7 in Fig. 6.6), defined as the field above which the decay rate is

determined by rms area fluctuations as discussed above, goes to zero as the array size is

4The scaling factor between the Gaussian and uniform probability distributions for the rms
site displacements in 2D is AG = Aub/3.

106



0.8

E 0.4

0.2

0.0 TV I

0 5 10 15 20 25
f

Fig. 6.6. Decrease in critical temperature vs. magnetic field averaged over
10 realizations for a 12x12 array with weak positional disorder defined by a
Gaussian distribution (case G), with AG = 0.00231. Note the faster decay
rate for the principal oscillations at low f, crossing over to more slowly
decaying principal oscillations at f0 = 7, as indicated by the intersection of
the dashed lines. Fine structure is present within the low field envelope.
The same decay rate occurs for cases (P) and (U) when Ap = 0.004 and
AU = 0.004, indicating that this low-field decay rate is independent of unit
cell area or shape.
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increased. Further simulations are necessary to extrapolate these results to the infinite-

sample limit.

6.6 Conclusion

We conclude that the behavior of T,(fo) oscillations as determined by mean-field

simulations on positionally-disordered wire arrays is similar to measured magnetoresistance

oscillations of two-dimensional Josephson junction arrays with positional disorder. Both

have a critical field, defined by the disappearance of principal oscillations, that scales

inversely with the amount of disorder with approximately the same proportionality

constant. Further investigation is necessary, however, to determine whether mean-field

theory, using the linearized Ginzburg-Landau equations, is sufficient for describing the

decay of fine structure in disordered arrays.

108



CHAPTER 7

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

We have shown in the previous chapters that interesting phenomena occur in 2D

Josephson junction arrays biased with large dc and rf currents. The commensurability of

the magnetic field was shown to play an important role in the resulting dynamical response,

particularly for the commensurate fields when the field-induced vortex superlattices are

strongly coupled to the array of junctions.

Our investigation of the dc properties showed that the peak in the dynamic resistance

vs. current curves in zero field was an excellent measure of the intrinsic array critical

current I,. We observed similar peaks in the dynamic resistance for other commensurate

magnetic fields, and, using the analogy with the zero field case, interpreted them as

depinning currents for the commensurate vortex superlattices. Our exact calculations of the

critical current for the f = 1/2 and 1/3 cases were shown to be in good agreement with our

experimental results and with previous theoretical results.

We discussed the effects of if currents on the phase-locking dynamics of the array.

In zero field, we observed giant Shapiro steps at voltages 1000 times that expected for a

single junction, Vn = nNhv/2e, where N = 1000 is the number of junctions in the direction

of applied current. When a commensurate magnetic field is applied, we showed that

fractional giant steps appear at voltages, Vn = n(N/q)hv/2e, directly related to the vortex

superlattice unit cell size, q. We presented a model based on the locking of the motion of

the vortex superlattice with the applied if current to explain these novel steps.

Computer simulations were performed on arrays of resistively shunted Josephson

junctions in a perpendicular magnetic field and fractional giant Shapiro steps were found in

the simulated current-voltage characteristics in agreement with our experimental
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measurements. The detailed motion of the magnetic field-induced vortices was shown to

be in agreement with our phenomenological model, through investigations of the

instantaneous voltage across adjacent junctions in the array. We presented further results at

low frequencies that indicated the possibility of subharmonic fractional giant steps.

Finally, we reported the results of mean-field simulations of superconducting wire

networks with positional disorder. These simulations were performed in order to explain

the decay of the magnetoresistance oscillations experimentally observed in positionally-

disordered Josephson junction arrays. Using the linearized Ginzburg-Landau equations we

numerically determined the transition temperature, Tc, as a function of the average number

of magnetic flux quanta per unit cell, fo, for different amounts of disorder. We found that

T,(fo) exhibited decaying oscillations, periodic in fo, whose amplitude went to zero at a

disorder-dependent critical field, f.. Our calculated value of this critical magnetic field was

shown to be in excellent agreement with that found from our experimental

magnetoresistance measurements on Josephson junction arrays.

We have presented experimental results on 2D Josephson arrays, and explained them

with various theoretical models and calculations, but many interesting experiments,

theoretical calculations, and simulations remain to be completed in order to fully understand

the dynamical properties of arrays. The physical properties of the real (experimental)

arrays, such as the geometrical inductance, self-induced fields and vortices, etc., were

shown to be very important for understanding the true dynamical behavior of the arrays in

certain temperature regimes, as well as causing interesting dynamical effects, such as the

zero-field 'subharmonic' steps. Simulations can be performed that include these 'real'

properties, such as the geometrical inductance, to ascertain in a controlled fashion their

effects on the array critical currents and fractional giant steps, and to make comparisons

with the experimentally determined results. The widths of the fractional giant steps as a

function of rf frequency, rf amplitude and damping, have yet to be systematically
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investigated, although preliminary simulations (Lee and Stroud, 1990) and calculations

(Halsey, 1990) are underway. Subharmonic fractional giant steps (besides the 'current-

induced' zero-field steps), suggested in Section 5.5, are a very interesting possibility in the

overdamped arrays, and will require careful theoretical and experimental scrutiny. Two-

dimensional arrays of underdamped junctions are expected to have even more complicated

dynamical properties because of the hysteretic response of the junctions.

The addition of disorder to arrays may also lead to more complicated vortex

superlattice motion, pinning, and subharmonic steps that can be investigated both

experimentally and theoretically. We have made preliminary dynamical measurements on

overdamped arrays with positional disorder, like those discussed in Chapter 6. Interesting

subharmonic fractional giant steps, independent of q, have been observed for all magnetic

fields, which appear to die out more quickly at higher voltages for larger amounts of

disorder, just as the fine structure in the magnetoresistance decays with increasing f. in

Chapter 6. These results can be understood qualitatively in our model because the disorder

breaks the symmetry of the array and, hence, the vortex superlattices become distorted,

destroying the coherent motion of the vortices.

The possibility of coherent phase-locking of the junctions in the 2D arrays to their

own radiation, without externally applied rf currents, is another interesting phenomena that

remains to be explored. This mutual phase-locking in arrays of junctions was originally

proposed by Tilley (1970) and has been sought by many authors using series arrays. (For

reviews of this subject see Jain et al., 1984, and Hansen and Lindelof, 1984.) Arrays of

junctions that can emit reasonable power levels ('lmW) to typical >_502 loads, will have

potentially useful applications as voltage-controlled oscillators at high-frequencies

(v > 100GHz) up to the superconducting gap frequency. Hadley (1989) has shown that

critically damped ( 3, 1) series and 2D arrays have a stable in-phase solution and, thus,

could possibly emit coherent radiation (also see Hadley et al., 1988). Even though the

impedance and characteristic frequency of our arrays are much to low for use in practical
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devices, our results have shown that phase-locking to externally applied rf currents is

possible in very large 2D arrays. Two-dimensional arrays could have a number of

advantages over series arrays for this application: (1) the quasi-long-range coupling

throughout the 2D array could improve the coherence and mutual phase-locking; (2)

voltage-locking may also be improved in 2D arrays, since they are not as detrimentally

affected by non-uniform junction critical currents (as are series arrays) because the currents

can redistribute through the network in compensation; (3) 2D arrays may also be

'magnetically-tunable' oscillators through the application of commensurate magnetic fields;

(4) the application of commensurate magnetic fields might even improve the coherent

mutual phase-locking of the junctions in the array through the presence of the vortex

superlattices; and, finally, (5) the available output power from an array to a matched load

(at any given frequency) goes as the square of the width of the array (P - M2), thus

making the available power and impedance matching (RL = (N/M)rn) easily adjustable by

changing the length and width of the array (see Lukens et al., 1989).

Finally, 2D arrays may be useful experimental systems for investigating such recent

theoretical ideas in 2D condensed matter physics as 'fractional statistics'. We have casually

used the term 'vortex' to describe the current patterns in our arrays in commensurate

magnetic fields, but single vortices are not localized entities defined by the currents through

only four junctions in a unit cell. It is possible that vortices in commensurate states have an

effective fractional "charge", and thus there may be a connection between our

commensurate vortex states and the 'anyon' states proposed by Wilczek in 1982 (see also

Laughlin, 1983, and Halperin 1984).
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APPENDIX I

Niobium-Copper-Niobium SNS Array Fabrication Procedure

1) Clean I" sapphire substrates with TCE, ACE, and METH in ultrasonic for
10 mins each.

2) Prepare Photoresist-Aluminum-Photoresist trilayer on substrates (see Forrester thesis,
Technical Report No. 26).

-spin Shipley 1400-27 @ 4000 rpm for 30 sec.
-bake for 30 mins @ 1006C.
-blanket expose entire substrate for 15 secs in Karl Suss mask aligner, using soft
contact mode.

-evaporate 500 A of Al in an alumina boat (base pressure PB< lxlO-6Torr).
-spin Shipley 1400-27 (or thinner) @ >4000 rpm for 30 sec.
-bake for 30 mins @ 80-904C.
-expose bilayer (array) mask for 3.7 secs in Karl Suss (soft contact mode).
-expose triangular current injection pads or other contact leads that are required.
-develop fully (-1 min) in 5:1 H20:Microposit 351 Developer.
-rinse thoroughly with H20 bottle, and blow dry with dry compressed air or N2 .
-etch Al until completely gone, and wait about 10-20 secs longer.
-rinse in H20 and blow dry thoroughly.
-using fresh developer form undercut in bottom PR (-30 secs).
-rinse in H20 and blow dry.
-back-etch Al in undercut, rinse H.20 and blow dry.
-check under microscope for 1-3 gm undercut, and develop further if necessary.

3) Copper evaporation
-mount sample on evaporator sample block and install in evaporator using insulating
teflon sheet, and teflon screws. Connect wire from sample block to high-voltage
feedthrough for application of rf. Check continuity and grounding before closing
chamber.

-place high-purity (99.999%) copper in large tungsten or molybdenum boat and
mount in evaporator using the electrodes for copper.

-make a small window in Al foil and pump chamber to PB< 2xl0-Torr (degas on).
-rf clean substrate.

-adjust Argon pressure in chamber to 15 mTorr (100mTorr foreline pressure).
-attach if matchbox and make sure 25E tuning capacitor is installed.
-open shutter.
-set forward power on if supply to 12W.
-tune loading inductor to minimize reflected power until it reads zero.
-the dc self bias voltage on if matchbox meter should read -100 V.
-turn off if power after 5 mins and close shutter.

-shut off Ar flow and pump out chamber again to PB < 2x10-7 Torr (degas on).
-turn on thckness monitor and set density p = 8.96 gm/cm 3.
-copper should melt -8.5-9.5 A.
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-boil off impurities for > 2 mins (300 A total).
-turn current up to 15.5 A, wait 10 secs (21700 A total).
-open shutter and zero thickness monitor simultaneously.
-evaporate 3500 A, and then imediately turn off power supply.
-cool down with shutter open.
-remove sample and mount directly in magnetron sputtering system.

4) Niobium sputtering (see Fig. 2.4)
-cover Al magnetron target with foil and shutter.
-make sure divider shield is installed on cold shroud.
-mount substrate using stainless steel substrate clamp with 1" square hole, making
certain that substrate is in good thermal contact with copper block (no sliding).

-mount 1-5/8" diam. (small hole) dark space shield -1/4" from substrate and make
certain that shield and substrate holder are not electrically shorted.

-pump chamber to PB< 1.5x10 -7 Torr (degas on and liquid N2 trap filled).
-make sure that cooling water is flowing to sample holder and appropriate
magnetrons.

-start liquid N2 flowing through cold shroud, PB should drop to < 6xl0 -8 Torr
(with degas off).

-rotate substrate above Aluminum target position.
-start Ar flow (35 sccm), adjust gate valve until chamber pressure reads 6 mTorr.
-connect magnetron cathode to high voltage supply and connect chamber ground.
-increase rheostat until voltage reads 500 V.
-drop diffusion pump 'flap' to increase chamber pressure until plasma ignites.
-optimum sputtering parameters are: 6 mTorr Ar, and 150 mA @ 500 V.
-dc clean target and getter chamber for a total of 15 mins.
-after 8 mins, begin rf Ar ion etching of substrate over the Al target with rf power
on and off for 1min intervals, for a total of 4 mins etching time (see Fig. 2.5).

-optimum rf etching parameters are 600 V dc self bias voltage, 23 W forward power
(0-1 W reflected power), using 25-2 tuning capacitor in matchbox.

-at the 15 min mark, imediately turn off rf power, rotate substrate over niobium
target, remove matchbox and ground substrate, all as quickly as possible.

-sputter niobium onto substrate for 10 mins (rate is - 200 A/min).

5) Lift off in acetone, 10-30 mins.
-ultrasonic I min in fresh acetone.
-ultrasonic 2 min in methanol.
-blow dry.

6) Clean masks.
-rinse masks with PGMEA and methanol, and blow dry.
-if necessary, clean masks in outer room hood using Piranha bath
(3:7 solution of 30% H20 2 (Hydrogen Peroxide): Sulfuric Acid (conc.)).

7) Inverting photoresist.
*important note: Shipley 1400 series PR is incompatible with Hoechst AZ PR.
The solvent for the AZ resist is propylene glycol monomethyl ether acetate
(PGMEA) notacetone. (=> use only specially marked 'AZ beakers and clean up
with PGMEA). The AZ resists are also excellent non-inverting resists; just skip the
inverting steps below.

-spin Hoechst AZ-5214E photoresist 4000 rpm for 30 secs (-1.4.n thick).
-bake for 30 mins @ 90"C.
-expose array mask for 3.7 sec in Karl Suss.
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-for superconducting bus bars and contact leads, expose the pad mask next.
-for normal metal contact leads and triangular current injection pads, expose these
regions individually by blanking-off the array with the 'half chrome' mask.
(We want these regions to be protected by inverted photoresist while the Nb islands
are formed to ensure array uniformity).

-bake 1" sapphire substrate in oven for 4 min @ 120-C
(70 secs for 2" Si wafers).

-blanket expose for 90 secs in Karl Suss (soft contact mode).
-develop 75 secs with Hoechst AZ-422MIF for inverting process
(developing time for noninverting PR is longer, -3 min).

-rinse y trg with H20 and blow dry.

8) Reactive ion etch (RIE).
-mount in old RIE chamber using Si spacers between clips and substrate.
-make sure that cooling water is flowing to sample holder/cathode.
-pump chamber to < 100 mTorr and vent to near atmosphere with dry N2.
-Repeat pump and vent three times.
-flow SF 6 15 min (full scale) and set gas correction factor to read 14 sccm full scale.
-connect rf matchbox and make sure 2ipE tuning capacitor is installed (see Fig.
2.5).

-set flow rate to 13 sccm (-180 mTorr in chamber).
-set rf power level to 44 W.
-turn on rf power and tune matchbox to minimize reflected power (typically only 1
W).

-matchbox self-bias voltage should read -30 V.
-RIE for 4-5 mins (Nb etch rate -750 A/min, SiO etch rate -250 A/min).
-turn off rf and SF6 gas flow.
-vent and pump with dry N2 three times and then vent to atmosphere.
-remove sample and pump down chamber.

9) Strip photoresist
-put substrate in beaker with Hoechst AZ-300T stripper.
-place beaker on hot plate and heat to 70-80"C (low setting).
-strip for 25-30 mins and then ultrasonic briefly, 1-2 mains.
-rinse with H20 and blow dry.

10) Complete Normal metal contact pads and leads.
-repeat processing steps 7-9 above, with the following exceptions:

-expose only the Nb on the pads and leads with the 'half-chrome' mask.
-skip inverting steps (post-expose bake and blanket expose) for noninverting
process.

-RIE until Nb on pads and leads are visibly removed (-90 secs).
-remove PR with PGMEA if possible and skip ultrasonic steps.
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APPENDIX II

DC SQUID Fabrication and Application as a Sensitive Voltmeter

The motivation for developing dc SQUID (superconducting quantum interference

device) fabrication technology in our lab was to make a highly-sensitive pico-voltmeter for

measuring 2D arrays very close to their phase transition temperature. The voltmeter must

be sensitive because the arrays have low resistance and because very small bias currents

must be used to minimize the current unbinding of the vortex pairs. With the advent of

thin-film fabrication technology, dc SQUIDs can now be fabricated with two nearly

identical junctions and noise sensitivities approaching the quantum noise limit, thus making

them ideal devices for constructing such a voltmeter. We will briefly describe some of the

important considerations for making dc SQUIDs into useful and sensitive devices,

followed by a brief description of our fabrication process and the SQUID voltmeter.

A. DC SQUID Design

A dc SQUID is a device made of two Josephson junctions in parallel so that it can be

dc current biased, as opposed to an rf SQUID that must be coupled to inductively. The dc

SQUID is essentially a flux to voltage transducer, where a changing magnetic field through

the area between the junctions will result in a change in the voltage across the SQUID. The

SQUID is sensitive to extremely small changes in magnetic field as a result of fluxoid

quantization around the superconducting loop formed by the two junctions, thus making

them excellent magnetometers. The first high-performance thin-film planar dc SQUIDs

were made by Jaycox and Ketchen (1981) using IBM's Nb-Pb edge-junction technology.

The advantages of these dc SQUIDs over previous point contact SQUIDs are better

121



junction uniformity and the ability to fabricate an input coil that is very 'closely-coupled' to

the SQUID 'washer' that forms the superconducting loop between the junctions. Most dc

SQUIDs, including our own, are now modelled after this design.

There are three interdependent quantities that must be adjusted in order to tune a dc

SQUID to its optimum sensitivity (see Ketchen, 1981): (1) the McCumber parameter,

PC = 2eicrn2C/h (see Section 1.2), (2) the ratio of the geometrical inductance of the

washer, L, to the Josephson inductance, 3L = L/tL1 = 2icL/Do (see Section 2.3), and (3)

the intrinsic (coupled) energy sensitivity of the SQUID due to white noise,

E, = hkT/eirn2, where 2 = M2/LiL. M is the mutual inductance between the input coil

and the SQUID washer, and Li is the self inductance of the input coil. With the closely-

coupled input coil arrangement discussed above, the coupling to the dc SQUID is excellent,

giving values of 12 2t 0.9 (see Jaycox and Ketchen, 1981). The two junctions in the dc

SQUID should be overdamped (3, , 1) so that they are not hysteretic and the i-v curves are

single valued. The parameter 13L determines the maximum current modulation depth of the

dc SQUID with magnetic field (see Van Duzer and Turner, 1981, pp. 206-213). It has

been shown (Zimmerman and Silver, 1966, and Clarke and Paterson, 1971) that the

SQUID is most sensitive when its modulation current is - 50% of its maximum current

(2ic) and that this occurs when 13L - 1.

Thus, with 12 determined by the coupling configuration, the sensitivity of the dc

SQUID can approach the quantum limit, ew - h, at a given operating temperature, by

choosing eicrn larger than kT. The trick to all of this is to fabricate junctions with large ij n,

while keeping them non-hysteretic and, at the same time, fixing 13L = 1. The critical current

and capacitance of the junctions are generally determined by the fabrication technology (the

minimum area of the junctions and the oxidation time of the tunnel barriers), so that Pc is

finely tuned by placing external shunt resistors across each of the junctions. We can adjust

PL= I by fabricating a SQUID washer with a certain hole diameter, d, since Chang (1981)

has shown that L - 1.25.od (see also Jaycox and Ketchen, 1981).
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B. DC SQUID Fabrication

These planar dc SQUIDs are the most complicated devices made in our lab, requiring

five separate mask patterning steps and all of the latest fabrication technologies (RIE, Nb

sputtering, etc.) that we have available. We originally made our own dc SQUID masks

using our electron-beam patterning facility, but with the limited field of view we could only

make masks for a single device. The masks that we now use are copies of those used by

Muck et al. (1987) for making Nb-Nb 2O5 -Pb dc SQUIDs, and can make -16 usable

devices on a 2"-diameter Si wafer. The washers for these SQUIDs have L - 300-600pH,

thus requiring a critical current for each junction ic - 1-3giA. A schematic diagram of the

thin-film layers required to make a dc SQUID are shown in Fig. AII. 1. The junctions are

defined by the 2.5pLm-diameter holes in the SiO insulating layer. We chose to develop an

all-refractory Nb junction technology with artificial aluminum-oxide barriers (Nb-A1203-

Nb), because Nb junctions are more robust than Pb junctions and A120 3 is now known to

be a much better junction barrier than Nb 20s (Huggins and Gurvitch, 1985). We will

briefly describe the fabrication steps below. Please refer to the array fabrication procedure

in Appendix I for various details on Nb sputtering, RIE, ff Ar-ion etching, and inverting

photoresist techniques.
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Coupling Coil
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Electrode
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and Washer

1A.-- .------L - ------ ---. ...... ...-
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Current-Removal
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D Silicon Monoxide

E Niobium

Fig. AII. 1. Planar thin-film dc SQUID schematic, showing four of the five
mask steps for making a complete SQUID with a close-coupled input coil.
(The missing step is the first step which defines the Cu.6Au.4 shunt
resistors.) The Nb-AI2 0 3-Nb junctions are vertical 'sandwich' junctions
defined by the 2.5p.m-diameter windows in the SiO, where the first Nb
layer that forms the SQUID washer also serves as a base electrode. The
A120 3 tunnel barrier and Nb counter electrode that complete the junction are
formed sequentially in the magnetron sputtering machine during the same
(final) pump-down step in order to ensure junction reproducibility.
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C. DC SQUID Fabrication Procedure

1) Clean a 2" Si substrate with TCE, ACE, METH in ultrasonic for 10 mins each.

2) Cu. 6Au. 4 Shunt resistors.
-Chlorobenzene photoresist undercut technique (MUck er al., 1987).

-spin Shipley 1450J for 30 sec @ 6000 rpm.
-bake for 20 rins @ 65"C.
-cool wafer > 1 min.
-soak in chlorobenzene for 10 mins (be careful not to breathe it!).
-bake for 10 mins @ 65-C.
-expose U-shaped resistor mask in Karl Suss for 15 secs
(blank off the other patterns on the mask with the black negative).

-develop 30-60 secs (as short as possible for the best resolution).
-rinse thoroughly in H20.
-check under microscope for 0.5-1 .Ogim undercut.

-evaporate 60% Cu and 40% Au (by weight) in evaporator (p = 13.10 gm/cm 3),
using the W or Mo wire coils. Each shunt resistor should be -1-100 (note that
500A gives a resistivity - I0pg -cm).

-lift off in acetone.

3) Nb Base electrode, washer and pads.
-This Nb level can either be formed by RIE or with a lift-off process, since we have

masks of either sign. We will describe the lift-off process using the RIE mask and
a negative photoresist, because the RIE mask is a better copy of the original (the
regular mask is not as good because the gap in the washer slit is larger (> 1 Opm)
than the junction window spacing) and because lift off is simpler than RIE.

-prepare inverting photoresist AZ-5214E (see Appendix I) and align the RIE mask so
that the L-shaped CuAu alignment marks are at the comers of the washer. The U-
shaped resistor should contact both the washer and the current-removal lead on all
the SQUID devices on the wafer. Expose and process using the inverting steps
described in Appendix I.

-sputter 1000-2000A of Nb (see Appendix I)
-lift off in PGMEA.

4) SiO Insulating layer and junction window.
-prepare Shipley photoresist 1400-28 (or -30) and spin at 4000-8000 rpm for a thin

layer. Do not use an undercut.
-expose the SiO insulating layer mask, aligning the windows to the comers of the

washer (on the inside edges of the washer slit) and develop.
-rf clean the substrate 5 mins in the evaporator (see Appendix I) before evaporating

IOOOA of SiO (p = 2.13 gncm3) from a 'chimney' chamber. Make sure that all of
the SiO powder is in one compartment and that its chimney is capped.

-remove from chamber and inspect for pin-holes in the SiO (We have had problems
with the SQUID input coil shorting through the SiO to the washer. Breaking
vacuum and evaporating another layer fills the pin-holes).

-evaporate another 1000A of SiO (Note that the complete SiO layer should be thicker
than the Nb base electrode/washer layer).

-lift off in acetone.
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5) Nb Close-Coupled coil.
-prepare a thin layer of photoresist as described in (4) above and expose the 50-turnIclose-coupled' input coil, blanking off the other patterns on the mask with the
black negative. The coil leads on this mask must contact the outgoing leads (that go
to the pads) as well as the windows in the SiG layer that allow contact to the Nb
strip in the washer slit. This strip completes the coil circuit by bringing the inner
winding of the coil back to the outside where it can connect to the pad leads.

-sputter 1600A of Nb (- 8 mins).
-lift off in acetone.

6) A12 0 3 Barrier formation and Nb counter electrode deposition.
-prepare photoresist with an undercut using the chlorobenzene technique described

above in (2).
-expose counter electrode mask (again blanking off the unwanted patterns with the
negative) and develop. The counter electrode should be aligned to cover the
windows in the SiO layer and make contact to the current-removal lead.

-mount sample on water cooled sample holder in sputtering chamber
(make sure that both Nb and Al magnetrons are uncovered and have H20 cooling).
-rf Ar-ion etch at a self-bias voltage of 600Vd, (on match box), for 4 mins total at 1
min intervals (see Appendix I) to remove the Nb-oxide that formed in the windows.

-immediately sputter 50- 10OA of Al from the Al magnetron (80 mA @ 500V gives a
rate- 120A/min).

-oxidize the Al to create the tunnel barrier by closing the gate valve and filling the
chamber with pure 02. By varying the oxidation time and pressure the critical
current of the junctions can be tuned. We typically used 1 hour @ 1 Torr. It is also
possible to create a controlled oxide barrier with an rf plasma using the 5% 02-95%
Ar (mixture) cylinder.

-pump out the oxygen with the roughing pump and then pump the chamber back
down to its original base pressure with the diffusion pump.

-dc clean the the Nb target thoroughly and then sputter 2000A Nb.
-lift off.

6) Spin a protective layer of photoresist on the wafer and then dice or saw it into the
7 x 10mm dc SQUID chips. Remove the photoresist with acetone. The dc
SQUID chips are now complete.

Photographs of a completed dc SQUID made in our lab using the above process are

shown in Figs. AII.2 and AII.3. We have just finished developing this fabrication

process. The SQUIDs have yet to be finely tuned for optimum sensitivity by adjusting the

thickness of the resistors and the oxidation parameters for the junction barriers.
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Fig. AII.2. Top view of a completed Nb-A120 3-Nb junction dc SQUID.
The 501-m-wide Nb at the top and bottom are the current-bias leads. The
dark square (180g.m on a side) in the center is the hole in the SQUID
washer. The 50-turn Nb close-coupled input coil (with 2.5.tm pitch) lies on
top of the SQUID with its current leads entering and exiting on the left. The
two junctions, one on either side of the washer slit, and the counter
electrode are at the bottom edge of the washer (a blow-up of the junction
region is shown in Fig. AII.3). The input coil leads (center left) and the
current bias leads (top and bottom) eventually connect to large (lx2mm)
contact pads on the SQUID chip (see Fig. AII.5). The curvature at the
edges of the picture and the dark spots at the top and right are due to the
microscope optics.
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Fig. AII.3. Close-up of junction region of one of our dc SQUIDs. The
2.5pm-diameter (circular) windows that define the Nb-A120 3-Nb junctions
are seen in the center of the picture. The counter electrode connects to the
junction windows and the slightly narrower current removal lead at the
bottom. The outline of the U-shaped Cu.6Au.4 layer that forms the two
shunt resistors can be seen connecting the bottom edge of the washer to a
tap extending up from the current-removal lead. Part of the outer six turns
of the 50-turn input coil (with 2.5gim pitch) can be seen at the top of the
photograph. The vertical 4pm Nb strip, that connects the inside of the coil
back to the outside, can be seen lying in the lOgm-wide slit of the washer
and connecting to the horizontal lOgm-wide Nb lead through a window in
the SiO layer.
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D. DC SQUID Voltmeter

The design of our dc SQUID voltmeter is modelled after the rf SQUID voltmeter

used by McWane et al. in 1966 (see also Giffard et al., 1972, and Davidson er al., 1974).

We have modified this design for dc SQUIDs by incorporating the 100kHz flux-locked-

loop (FLL) electronics used by Clarke er al. (1976). The circuit design of the FLL

electronics that we use was provided by MOck er al. (1987), but built in our lab. A simple

schematic of the complete voltmeter with electronics is shown in Fig. AII.4. When the

SQUID is current biased, somewhere near Ibia - 2io, the change in its voltage as a function

of flux (V-D) is a maximum. This V-0 curve will be nearly sinusoidal (for SQUIDs with

identical junctions), having maxima and minima when 0D = nCD0 and (n+l/2)D0 ,

respectively (see Clarke et al., 1976, or Ketchen, 1981). If a 100kHz modulation

(amplitude -O0/4) is applied to the SQUID when it is biased exactly at one of these extrema

(through the external modulation coil), the voltage across the SQUID will oscillate at

200kHz with no component at 100kHz (see Clarke et al., 1976). If the voltage across the

array (or any other sample to be measured) is changed so that it is different from the voltage

across the standard resistor, Rs (see Fig. AII.4), then an error current, I, will flow

through the close-coupled input coil on the SQUID chip. This changes the flux through the

SQUID away from the extrema, so that the voltage across the SQUID now has a

component at 100kHz. This signal is detected by a 100kHz resonant input circuit and then

lock-in detected through the two amplifiers and the mixer. The output of the mixer will be

proportional to the amplitude of the detected 100kHz signal. If the negative-feedback loop

is closed, the current through the standard resistor will increase until the error current goes

to zero. This negative-feedback loop through the dc SQUID forces the SQUID to lock to

the original value of flux through the SQUID, i.e. one of the extrema, nc! 0 or (n+1/2)D 0 ,

originally set by the external modulation coil. The current through the feedback resistor,

R, will be proportional to the change in the magnetic field through the SQUID, and thus
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Fig. AHI.4. DC SQUID voltmeter schematic, using flux-locked loop (FLL)
electronics. The array is in a superconducting bridge circuit (bold line) with
the 'close-coupled' input coil (Li) and the standard resistor, Rs. The
SQUID is kept at a constant dc current bias, but a constant offset field (from
Id .a) with a 100kHz ripple (with amplitude -0/4) is coupled to the
SQUID through the external modulation coil. The offset field adjusts the
flux in the SQUID so that its voltage is at an extremum, noo or (n+1/2) 0 .
The tuned amplifier detects a 100kHz signal when the flux from the bridge
circuit Lile * 0. The FLL electronics tries to keep the voltage across the
array equal to the voltage across Rs by sending a feedback current through
the feedback resistor, RF, whenever the error current, Ie, is nonzero. When
the flux through the SQUID is locked (I.=0), the the voltage across RF, as
measured by the buffer amplifier, is proportional to the change in the array
voltage.
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Fig. AII.5. Two copper 'slugs' that mount in the modified SHE (now BTI,
Inc.) rf SQUID probe for our dc SQUID voltmeter. One of the completed
7xlOmm dc SQUID chips is mounted in the left slug with Teflon bolts. The
SQUID current-bias leads (which are also the voltage leads) are Al-wire
bonded to a pair of copper bars, which will be attached to wires in the
SQUID probe with the brass bolts at the bottom. The two pads at the top of
the Si chip are connected to the close-coupled input coil. These pads will be
(although not shown) connected to the pair of Nb bars at the top of the slug
with superconducting wire, using the brass bolts on the Nb bars and either
indium dots or superconducting solder on the chip. The copper external
modulation coil lies under the SQUID chip inside a slot in the slug, as seen
in the right slug. Its twisted pair of wires emerges from the top of the slug,
exiting above the Nb bars.
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proportional to the change in voltage across the array. The negative feedback also provides

the high input impedance that is essential for the voltmeter. (See Giffard et al., 1972, for

various calculations of the input impedance and gain of the voltmeter circuit.)

We have modified an rf SQUID voltmeter probe (SHE Corp., now BTI) for use

with our dc SQUID voltmeter, because it already has an internal low-resistance standard

resistor (Rs - 3A.M) and a superconducting Nb shield. This entire probe mounts in an

array measurement rig similar to the one described in Section 2.2. The dc SQUID chip is

mounted on a copper 'slug' (see Fig. AII.5) where the close-coupled coil is connected to

two Nb bars through superconducting wires and the external modulation coil lies directly

beneath the SQUID washer. The slug is mounted in the original if SQUID slug chamber

where it is enclosed by the Nb shield. The current-bias leads to the SQUID and the

external modulation coil are connected to existing (slightly modified) wiring in the probe

that is then attached to the room temperature FLL electronics. The close-coupled coil is

connected to the existing standard resistor at the bottom of the probe and to the array

through superconducting wires to avoid thermal emf's that Would cause unwanted error

currents. Since the standard resistor must be small (see Giffard et al., 1972) it is very

important to minimize the contact resistance to the standard resistor. By using the already

optimized circuit connections to the existing standard resistor from the if SQUID probe we

do not have to worry about this potential problem, because all the other connections are

made between superconductors using pressed-contacts on Nb bars or with indium dots and

solder.
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